


Lecture Notes in Computer Science 2151
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen



3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo



Albertas Caplinskas Johann Eder (Eds.)

Advances
in Databases and
Information Systems

5th East European Conference, ADBIS 2001
Vilnius, Lithuania, September 25-28, 2001
Proceedings

1 3



Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Albertas Caplinskas
Institute of Mathematics and Informatics
Akademijos st. 4, 2600 Vilnius, Lithuania
E-mail: alcapl@ktl.mii.lt

Johann Eder
University of Klagenfurt, Department of Informatics Systems
Universitätsstr. 65, 9020 Klagenfurt, Austria
E-mail: eder@isys.uni-klu.ac.at

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Advances in databases and information systems : 5th East European conference
; proceedings / ADBIS 2001, Vilnius, Lithuania, September 25 - 28, 2001.
Albertas Caplinskas ; Johann Eder (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2151)
ISBN 3-540-42555-1

CR Subject Classification (1998): H.2, H.3, H.4, H.5, J.1

ISSN 0302-9743
ISBN 3-540-42555-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10845509 06/3142 5 4 3 2 1 0



Preface

ADBIS 2001 continued the series of Eastern European Conferences on Advances
in Databases and Information Systems. It took place in Vilnius, the capital of
Lithuania.

The ADBIS series already has established some reputation as a scientific
event of high quality serving as an internationally highly visible showcase for
research achievements in the field of databases and information systems in the
Eastern and Central European region as well as a forum for communication
and exchange with and among researchers from this very area. The topics of
the conference were related to the European Commission’s initiative “eEurope –
Information Society for All”. They represent research areas that will greatly in-
fluence the functionality, usability, and acceptability of future information prod-
ucts and services. The conference sought to bring together all major players
(experienced researchers, young researchers, representatives from industry), to
discuss the state of the art and practical solutions, and to initiate promising fu-
ture research. In order to ensure the active participation of representatives from
industry the conference provided special industrial sessions.

The theme of ADBIS 2001 was set with invited talks given by renowned
scientists covering important aspects of this wide field of research: Web access,
processes and services in e-commerce, and content management.

The call for papers attracted 82 submissions from 30 countries. In a rigorous
reviewing process the international program committee selected 25 papers for
long presentation and inclusion in these proceedings. All these papers have been
reviewed by at least three reviewers who evaluated their originality, significance,
relevance, and presentation and found their quality suitable for international
publication.

Topically, the accepted papers span a wide spectrum of the database and
information systems field: from query optimization and transaction processing
via design methods to application oriented topics like XML and data on the web.

Furthermore, the program featured two tutorials, presentations of short pa-
pers with challenging novel ideas at an early stage, experience reports, and in-
dustrial papers on the application of databases and information systems.

We would like to express our thanks and acknowledgement to all the people
who contributed to ADBIS 2001:

– the authors, who submitted papers to the conference,
– the reviewers and the international program committee who made this con-

ference possible by voluntarily giving of their time and expertise fto ensure
the quality of the scientific program

– the sponsors of ADBIS 2001 who supported the organization of the confer-
ence and permitted the participation in particular of young scientists from
Eastern countries

– all the good spirits and helpful hands of the local organization committee



VI Preface

– Mr. Günter Millahn (Brandenburg University of Technology at Cottbus) for
maintaining the conference server

– the Springer-Verlag for publishing these proceedings and Mr. Alfred Hof-
mann for the effective support in producing these proceedings

– and last but not least we thank the steering committee and, in particular,
its chairman, Leonid Kalinichenko, for their advice and guidance.

Finally, we hope that all who contributed to this event see this volume as a
reward and as representation of scientific spirit and technical progress commu-
nicating exciting ideas and achievements.

June 2001 Albertas Caplinskas and Johann Eder



Conference Organization

The ADBIS 2001 Conference on Advances in Databases and Information Systems
was organized by the Vilnius Gediminas Technical University, the Institute of
Mathematics and Informatics, Vilnius, and the Lithuanian Computer Society in
cooperation with the ACM Sigmod Moscow Chapter and the Lithuanian Law
University.

General Chair

Edmundas Zavadskas (Vilnius Gediminas Technical University, Lithuania)

Program Committee Co-chairs

Albertas Caplinskas (Institute of Mathematics and Informatics, Lithuania)
Johann Eder (University of Klagenfurt, Austria)

Program Committee

Suad Alagic (Wichita State University, USA)
Leopoldo Bertosi (Pontificia Universidad Catoloca de Chile, Chile)
Juris Borzovs (Riga Information Technology Institute, Latvia)
Omran A. Bukhres (Purdue University, USA)
Wojciech Cellary (Poznan University of Economics, Poland)
Bohdan Czejdo (Loyola University, USA)
Hans-Dieter Ehrich (Braunschweig Technical University, Germany)
Heinz Frank (University of Klagenfurt, Austria)
Remigijus Gustas (University of Karlstad, Sweden)
Tomas Hruska (Brno Technical University, Slovakia)
Yoshiharu Ishikawa (University of Tsukuba, Japan)
Leonid Kalinichenko (Institute for Problems of Informatics,

Russian Academy of Sciences, Russia)
Wolfgang Klas (Ulm University, Germany)
Matthias Klusch (German Research Center for Artificial Intelligence GmbH,

Germany)
Mikhail R. Kogalovsky (Market Economy Institute,

Russian Academy of Sciences, Russia)
Kalle Lyytinen (University of Jyvaskyla, Finland)
Yanis Manolopoulos (Aristotle University, Greece)
Michail Matskin (Norwegian University of Science and Technology, Norway)
Tomaz Mohoric (Lublijana University, Slovenia)
Tadeusz Morzy (Poznan University of Technology, Poland)
Pavol Navrat (Slovak University of Technology, Slovakia)



VIII Conference Organization

Nikolay N. Nikitchenko (Kiev University, Ukraine)
Boris Novikov (University of St.- Peterburg, Russia)
Maria Orlowska (The University of Queensland, Australia)
Euthimios Panagos (voicemate, Inc, USA)
Bronius Paradauskas (Kaunas University of Technology, Lithuania)
Oscar Pastor Lopez (Universidad Politecnica de Valencia, Spain)
Jaan Penjam (Tallinn Technical University, Estonia)
Günther Pernul (University of Essen, Germany)
Jaroslav Pokorny (Charles University, Czech Republic)
Henrikas Pranevichius (Kaunas University of Technology, Lithuania)
Colette Rolland (University of PARIS-1 Pantheon/Sorbonne, France)
Klaus-Dieter Schewe (Technical University Clausthal, Germany)
Timothy K. Shih (Tamkang University, Taiwan)
Julius Stuller (Institute of Computer Science, Academy of Sciences

of the Czech Republic, Czech Republic)
Kazimierz Subieta (Polish Academy of Science, Poland)
Bernhard Thalheim (Cottbus Technical University, Germany)
Aphrodite Tsalgatidou (University of Athens, Greece)
Enn Tyugu (Royal Institute of Technology, Sweden)
Gottfried Vossen (University of Münster, Germany)
Benkt Wangler (Stockholm University, Sweden)
Tatjana Welzer Druzoviec (Maribor University, Slovenia)
Viacheslav Wolfengagen (Moscow Engineering Physics Institute, Russia)
Vladimir I. Zadorozhny (University of Maryland, USA)
Alexandr Vasil’evich Zamulin (Institute of Informatics Systems,

Russian Academy of Sciences, Russia)

Additional Referees

Dmitry Briukhov
Marjan Druzovec
Gintautas Dzemyda
Dale Dzemydiene
Vicente Pelechano Ferragud
Chris A. Freyberg
Antonio Grau
Saulius Gudas
Joanna Jozefowska
Dimitrios Katsaros
Christian Koncilia
Antanas Lipeika
Audrone Lupeikiene
Olivera Marjanovic
Saulius Maskeliunas

Karl Neumann
Emilio Insfran
Pelozo Costas Petrou
Ralf Pinger
Torsten Priebe
Shazia Sadiq
George Samaras
Srinivasan T. Sikkupparbathyam
Cezary Sobaniec
Eva Söderström
Jerzy Stefanowski
Matias Strand
Eleni Tousidou
Costas Vassilakis
Robert Wrembel
Jian Yang



Conference Organization IX

Organizing Committee

Chair

Olegas Vasilecas (Vilnius Gediminas Technical University, Lithuania)

Vice-Chairs

Algimantas Ciucelis (Vilnius Gediminas Technical University, Lithuania)
Alfredas Otas (Lithuanian Computer Society, Lithuania)
Rimantas Petrauskas (Lithuanian Law University, Lithuania)

Members

Petras Adomenas (Vilnius Gediminas Technical University, Lithuania)
Danute Burokiene (Institute of Mathematics and Informatics, Lithuania)
Dale Dzemydiene (Institute of Mathematics and Informatics, Lithuania)
Milda Garmute (Vilnius Gediminas Technical University, Lithuania)
Audrius Klevas (Vilnius Gediminas Technical University, Lithuania)
Kristina Lapin (Vilnius University, Lithuania)
Audrone Lupeikiene (Institute of Mathematics and Informatics, Lithuania)
Saulius Maskeliunas (Institute of Mathematics and Informatics, Lithuania)
Guenter Millahn (Brandenburg University of Technology at Cottbus, Germany)
Arunas Ribikauskas (Vilnius Gediminas Technical University, Lithuania)
Danute Vanseviciene (Institute of Mathematics and Informatics, Lithuania)
Aldona Zaldokiene (Institute of Mathematics and Informatics, Lithuania)

ADBIS Steering Committee

Chair

Leonid Kalinichenko (Russia)

Members

Andras Benczur (Hungary)
Radu Bercaru (Romania)
Albertas Caplinskas (Lithuania)
Johann Eder (Austria)
Janis Eiduks (Latvia)
Hele-Mai Haav (Estonia)
Mirjana Ivanovic (Yugoslavia)
Mikhail Kogalovsky (Russia)
Yannis Manopoulos (Greece)

Rainer Manthey (Germany)
Tadeusz Morzy (Poland)
Pavol Navrat (Slovakia)
Boris Novikov (Russia)
Jaroslav Pokorny (Czech Republic)
Boris Rachev (Bulgaria)
Anatoly Stogny (Ukraine)
Tatjana Welzer (Slovenia)
Viacheslav Wolfengagen (Russia)



X Conference Organization

Sponsoring Institutions

European Commission, Research DG, Human Potential Programme,
High-level Scientific Conferences (subject to contract)

Lithuanian Science and Studies State Foundation
Microsoft Research Ltd.



Table of Contents

Invited Papers

Ubiquitous Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Franca Garzotto

From Workflows to Service Composition in Virtual Enterprises . . . . . . . . . . 2
Marek Rusinkiewicz

Subject-Oriented Work: Lessons Learned from an Interdisciplinary
Content Management Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Joachim W. Schmidt, Hans-Werner Sehring, Michael Skusa,
Axel Wienberg

Regular Papers

Query Optimization

Query Optimization through Removing Dead Subqueries . . . . . . . . . . . . . . . . 27
Jacek P�lodzień, Kazimierz Subieta

The Impact of Buffering on Closest Pairs Queries Using R-Trees . . . . . . . . . 41
Antonio Corral, Michael Vassilakopoulos, Yannis Manolopoulos

Enhancing an Extensible Query Optimizer with Support for Multiple
Equivalence Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Giedrius Slivinskas, Christian S. Jensen

Multimedia and Multilingual Information Systems

Information Sources Registration at a Subject Mediator as Compositional
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Dmitry O. Briukhov, Leonid A. Kalinichenko, Nikolay A. Skvortsov

Extracting Theme Melodies by Using a Graphical Clustering Algorithm
for Content-Based Music Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 84

Yong-Kyoon Kang, Kyong-I Ku, Yoo-Sung Kim

A Multilingual Information System Based on Knowledge Representation . . 98
Catherine Roussey, Sylvie Calabretto, Jean-Marie Pinon



XII Table of Contents

Spatiotemporal Aspects of Databases

Capturing Fuzziness and Uncertainty of Spatiotemporal Objects . . . . . . . . . 112
Dieter Pfoser, Nectaria Tryfona

Probability-Based Tile Pre-fetching and Cache Replacement Algorithms
for Web Geographical Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Yong-Kyoon Kang, Ki-Chang Kim, Yoo-Sung Kim

Data Mining

Optimizing Pattern Queries for Web Access Logs . . . . . . . . . . . . . . . . . . . . . . 141
Tadeusz Morzy, Marek Wojciechowski, Maciej Zakrzewics

Ensemble Feature Selection Based on Contextual Merit and Correlation
Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Seppo Puuronen, Iryna Skrypnyk, Alexey Tsymbal

Interactive Constraint-Based Sequential Pattern Mining . . . . . . . . . . . . . . . . . 169
Marek Wojciechowski

Transaction Processing

Evaluation of a Broadcast Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 182
Murat Karakaya, Özgür Ulusoy

An Architecture for Workflows Interoperability Supporting Electronic
Commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Vlad Ingar Wietrzyk, Makoto Takizawa, Vijay Khandelwal

Object and Log Management in Temporal Log-Only Object Database
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Kjetil Nørv̊ag

Conceptual Modeling. Information Systems Specification

Operations for Conceptual Schema Manipulation: Definitions
and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Helle L. Christensen, Mads L. Haslund, Henrik N. Nielsen,
Nectaria Tryfona

Object-Oriented Database as a Dynamic System with Implicit State . . . . . . 239
Kazem Lellahi, Alexandre Zamulin

The Use of Aggregate and Z Formal Methods for Specification and Analysis
of Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Henrikas Pranevicius



Table of Contents XIII

Active Databases

Detecting Termination of Active Database Rules Using Symbolic Model
Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Indrakshi Ray, Indrajit Ray

Querying Methods

A Data Model for Flexible Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Jaroslav Pokorný, Peter Vojtáš

The Arc-Tree: A Novel Symmetric Access Method for Multidimensional
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Dimitris G. Kapopoulos, Michael Hatzopoulos

Evaluation of Join Strategies for Distributed Mediation . . . . . . . . . . . . . . . . . 308
Vanja Josifovski, Timour Katchaounov, Tore Risch

XML

An RMM-Based Methodology for Hypermedia Presentation Design . . . . . . . 323
Flavius Frasincar, Geert Jan Houben, Richard Vdovjak

Efficiently Mapping Integrity Constraints from Relational Database to
XML Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Xiaochun Yang, Ge Yu, Guoren Wang

A Web-Based System for Handling Multidimensional Information through
MXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Manolis Gergatsoulis, Yannis Stavrakas, Dimitris Karteris,
Athina Mouzaki, Dimitris Sterpis

Information Systems Design

An Abstract Database Machine for Cost Driven Design of Object-Oriented
Database Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Joachim Biskup, Ralf Menzel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381



Ubiquitous Web Applications

Franca Garzotto

HOC- Hypermedia Open Center
Department of Electronics and Information

Politecnico di Milano, Italy
garzotto@elet.polimi.it

Abstract. Web sites are progressively evolving from browsable, read-
only information repositories that exploit the web to interact with their
users, to web-based applications, combining navigation and search capa-
bilities with operations and transactions typical of information systems.
In parallel, the possibility of accessing web-based contents and services
through a number of different devices, ranging from full-fledged desktop
computers, to Personal Digital Assistants (PDA’s), to mobile phones, to
set-top boxes connected to TV’s, makes web applications ubiquitous, i.e.,
accessible anywhere at any time.
Ubiquitous Web Applications (UWA’s for short) reveal a number of as-
pects which make them different with respect to a conventional data-
intensive applications, and must be taken into account throughout the
whole application lifecycle, from requirements to implementation. UWA’s
are executed in a Web-based environment, where the paradigm for pre-
senting and accessing information is hypermedia-like. Thus UWA’s have
a mixed nature - hypermedia and transactional, where hypertext struc-
tures and operation capabilities are strongly intertwined. In addition, the
ubiquitous nature of a UWA implies that the application has to take into
account the different constraints of different devices, comprising display
size, local storage size, method of input and computing speed as well as
network capacity. At the same time, ubiquity introduces new require-
ments on how the application tunes itself to the end user: each user
may wish to get information, navigation patterns, lay-out, and services,
that are tailored not only to his/her specific profile but also to the cur-
rent situation of use, in its temporal and environmental aspects. Thus
Ubiquitous Web Applications must be at the same time device-aware,
user-aware, and context-of-use-aware, and require sophisticate forms of
customization.
After an analysis of the novel requirements of UWA’s, this talk will focus
on their impact on the design process, and will discuss problems and
challenges related to modeling information and navigation structures,
operations and transactions, and customization mechanisms for this class
of applications.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, p. 1, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



From Workflows to Service Composition in
Virtual Enterprises

Marek Rusinkiewicz

Information and Computer Science Research Laboratory
Telcordia Technologies

Austin, TX, USA
marek@research.telcordia.com

Abstract. Workflow technologies have been used extensively to support
process-based integration of activities within enterprises and are at the
core of emerging Enterprise Integration Platform (EIP) technologies. Re-
cently, a new abstraction of electronic services has begun to receive a lot
of attention among researchers and in the vendor community. Electronic
services provide the basis for creation of virtual enterprises (VE), which
combine services from multiple providers. In this talk, we will discuss the
advances that are needed to provide support for VEs. These include the
ability to advertise, broker, synchronize and optimize the services. We
will discuss the infrastructure needed to support VE application, show
a prototype demo, and list important research problems that need to be
solved.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, p. 2, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 3-26, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Subject-Oriented Work: Lessons Learned from an
Interdisciplinary Content Management Project

Joachim W. Schmidt, Hans-Werner Sehring, Michael Skusa, and Axel Wienberg

Technical University TUHH Hamburg, Software Systems Institute,
Harburger Schloßstraße 20, D-21073 Hamburg, Germany

{j.w.schmidt,hw.sehring,skusa,ax.wienberg}@tuhh.de

Abstract. The two broad cases, data- and content-based applications, differ
substantially in the fact that data case applications are abstracted first before
they cross any system boundary while for content cases it is the system itself
which has to map application content into some data-based technology.
Through application analysis and software design we are aware of the difficul-
ties of such mappings. In an interdisciplinary project with our Art History col-
leagues who are working in the subject area of “Political Iconography” we are
gaining substantial insight into their Subject-Oriented Working (SOWing)
needs and into initial requirements for a SOWing environment. In this paper we
outline the project, its basic models, their generalization as well as our initial
experiences with prototypical SOWing implementations. We emphasizes the
conceptual and terminological aspects of our approach, sketch some of the
technical requirements of a generic SOWing software platform and relate our
work to various XML-based activities.

1 Introduction

As a result of advanced and extensible database technology now being available as
off-the-shelf products, a substantial part of database research and development work
has generalized into work on models and systems for multimedia content management.
R&D in content management includes a range of models and systems concentrating on
services for the following three lines of work:
- content production and publication work using multimedia documents;
- classification and retrieval work based on document content;
- management and control of such work for communities of users differentiated by

their roles and rights, interests and profiles, etc.
The work reported in this paper is based on an interdisciplinary project with a partner
from the humanities with strong semantic and weak formal commitment. Our project
partner specializes on work in icon- and text-based content from the subject area of
“Political Iconography”. This content is organized as a paper- and drawer-based sub-
ject index (PI-“Bildindex”, BPI, see Fig. 1) and is used for Art History research and
education [33].

Iconographic work has a long tradition in Art History, dating back to 19th century
“Christian Iconography”, and is based on integrated experience from three sources:



4 J.W. Schmidt et al.

- Art: multimedia content;
- Art History: process knowledge;
- Library Sciences: subject-oriented content classification and retrieval.
In our context we use the notion of subject-orientation very much in the sense of li-
brary science, as, for example, stated by Elaine Svenonius: “In a subject language the
extension of a term is the class of all documents about what the term denotes, such as
all documents about butterflies.” This understanding differs substantially from natural
language where “the extension, or extensional meaning, of a word is the class of enti-
ties denoted by that word, such as the class consisting of all butterflies” [30]. And
both understandings are in clear contrast to the semantics of terms in programming
languages and database models.

The interdisciplinary project “Warburg Electronic Library (WEL)” models and
computerizes BPI content and services [3], [19], and the WEL prototype allows inter-
disciplinary experiments and insights into multimedia content management and appli-
cations.

The overall goal of the WEL project is
- the generalization of our subject-oriented working experience,
- a work plan for R&D in subject-oriented content management, and
- a generic Subject-Oriented Working environment (SOWing environment).
Currently, many contributions to such R&D are based on XML as a syntactic frame-
work which provides a structural basis as well as some form of implementation plat-
form. The main reasons for XML’s powerful position are its strong structural com-
mitment and its semantic neutrality.

Successful content management requires that the three lines of work
- content production and publication work by multimedia documents;
- classification and retrieval work based on document content;
- management and control of such work for communities of users differentiated by

their roles an rights, profiles and interests, etc. [21]
are not supported in isolation but in a coherent and cooperative working environment
covering the entire space spanned by all three dimensions.

The main reason why XML-based work on content management often falls short
can be stated as a corollary of XML’s strength (see above): its weak semantic and
exclusively structural commitment. Much of the XML-based R&D contributes to the
above three lines of work only individually. Examples include [7], [31].

The paper is structured as follows. Section 2 introduces the two projects involved,
the “Bildindex für Politische Ikonographie (BPI)” and the “Warburg Electronic Li-
brary (WEL)”. In Sect. 3 the WEL model is generalized towards a generic “Work
Explication Language”. A system’s view of the WEL prototype is described in Sect. 4
and the first contours of a generic Subject-Oriented Working environment (SOWing
platform) are outlined. Related work, in particular work in the XML context, is dis-
cussed in Sect. 5. The paper concludes with a short summary and a reference to future
work in our long-term SOWing project.



Subject-Oriented Work: Lessons Learned from a Content Management Project 5

2 Warburg Electronic Library: An Interdisciplinary Content
Management Project

The development of the currently predominant data management models was heavily
influenced by application requirements from the business and banking world and their
bookkeeping experience: the concepts of record, tabular view, transaction etc. are
obvious examples. Data model development had to go through several generations –
record-based file management, hierarchical databases and network models – until the
relational data model reached a widely accepted level of abstraction for database
structuring and content-based data operation.

For traditional relational data management we basically assume that content is
“values of quantified variables” from business domains operated by transactions and
laid out as tables with rows and columns. The questions arise:

- How can we generalize from data management to the area of content management
where content domains are not “just dates and dollars”, content operation goes be-
yond “debit-credit transactions” and content layout means multimedia documents?

- What are key application areas beyond bookkeeping which help us understand,
conceptualize and finally implement the core set of requirements for multimedia
content management in terms of domain modelling, content-oriented work support
as well as content (re-) presentation?

Fig. 1. Working with the Index for Political Iconography in the Warburg-Haus, Hamburg

The work presented here is based on an interdisciplinary R&D-project between
Computer Science and Art History, the “Warburg Electronic Library” project. The



6 J.W. Schmidt et al.

application area was chosen because of Art History’s long-term working experience
with content of various media. The project itself is founded on extensive material and
user experience from the area of “Political Iconography”.

2.1 Subject-Oriented Work in Political Iconography

Political iconography basically intends to capture the semantics of key concepts of the
political realm under the assumption that political goals, roles, values, means etc.
requires mass communication which is implemented by the iconographic use of im-
ages. Our partner project in Art History, the “Bildindex zur Politischen Iconographie
(BPI)”, was initiated in 1982 by the Art Historian Martin Warnke [33] and consists of
roughly 1,500 named political concepts (subject terms, “Schlagworte”) and more than
300,000 records on iconographic works relevant to the BPI. In 1990 Warnke’s work
was awarded the Leibniz-Preis, one of the most prestigious research grants in Ger-
many.

Fig. 2. BPI “Bildkarte” St. Moritz (image card) describing art work by attribute aggregation

Starting with this experience, BPI work essentially relies on an Art Historian’s
knowledge of (documents refering to) political acts in which images play an active
role. Art Historians interpret “acts” as encompassing aspects of



Subject-Oriented Work: Lessons Learned from a Content Management Project 7

- “projects” (who initiated and contributed to an act? the when and where of an act?
etc.);

- “products” (what piece of art did the project produce? on what medium? place of
current residence etc.); and finally, the

- “concepts” behind the act (what political goals, roles, institutions etc. are ad-
dressed? what iconographic means are used by the artist? etc.).

On this knowledge level, BPI work identifies political concepts and names them
individually by subject terms – e.g., by “ruler”, “prince”, “pope”, “equestrian
statue”.

Subject term semantics is methodologically captured and systematically repre-
sented in the BPI by the following steps:

1. designing a conceptual, prototypical and representative (mostly mental) model for
each subject term, e.g., a prototypical equestrian statute; [29]

2. giving value to the relevant variables or facets of such prototypes by reference to
the Art Historian’s knowledge of “good cases”, i.e., political acts with an icono-
graphic dimension. Each such variable or facet is represented by a BPI entry
(“Bildkarte”, “Textkarte”, “Videokarte” – “media card” etc.) which holds a de-
scription of a “good case” for that facet, see for example, St. Moritz, see Fig. 2.

3. collecting all BPI entries on the same prototype into a single extent (“Bildkarten-
stapel”, …, “stack of media cards”, see Fig. 3) thus defining the semantics of a
subject term. Additional fine structure may be imposed on subject term extents
(order, “neighborhood”, named subextents, general association/navigation etc.);

4. maintaining a (“completion”) process aiming at a “best possible” definition of the
subject area at hand by

- “representative” subject terms covering the subject area at hand;
- “qualifying” prototypes for each subject term;
- “complete” sets of facets for prototype description;
- “good” cases for facet substantiation.

This makes it quite clear that the BPI is by no means just an index for accessing an
image repository. The BPI uses images only in their rather specific role as icons and
for the specific purpose of contributing to the description of cases and thus to the
semantics of subject terms [32]. In this sense, images represent the iconographic vo-
cabulary of BPI documents just as keywords contribute to the linguistic vocabulary of
text documents.



8 J.W. Schmidt et al.

Fig. 3. BPI subject term semantics (e.g. equestrian statue) by media card classification (image,
text, video cards etc.)

Art Historians with their long tradition of working with content represented by mul-
tiple media are far from restricting themselves to a mainly technical view on multime-
dia as most of the currently booming projects in Computer Science seem to do. Our
Art History colleagues are much closer to the message of people such as Marshall
McLuhan who understand media as “extensions of men [18]”.

The BPI has essentially two groups of users:
- a few highly experienced BPI editors for content maintenance and
- various broader user communities which access BPI content for research and edu-

cation purposes.
Being implemented on paper technology, the traditional BPI shows severe conceptual
and technical shortcomings:
- conceptually: the above attributes “representative”, “good”, “complete”, etc. are

highly subjective and, therefore, “completion semantics” is hard to meet even
within a “single-person-owned” subject index;

- technically: severe representational limitations are obvious and range from single
subsumption of BPI entries to a lack of online and networked BPI access.

In the subsequent section we outline two contributions of the “Warburg Electronic
Library” project which approaches the above conceptual and technical shortcomings
through an advanced Digital Library project which, as a prime application, is now
hosting the “Index for Political Iconography”.



Subject-Oriented Work: Lessons Learned from a Content Management Project 9

2.2 A Subject-Oriented Working Environment: Warburg Electronic Library

Viewed from our Computer Science perspective which shifted in recent years from
basic research in “persistent database programming” towards R&D in “software sys-
tems for content management (online, multimedia, …)”, the WEL project addresses a
range of highly relevant and interrelated content application issues:
- content representation by multiple media: images, texts, data, …;
- content structuring, navigation and querying; content presentation;
- content work exploiting subjects and ontologies: classification, indexing, …;
- utilization of different referencing mechanisms: icon, index, symbol;
- cooperative projects on multimedia content in research and education.
The WEL is an interdisciplinary project between the Art History department of Ham-
burg University (Research Group on Political Iconography, Warburg-Haus, Hamburg)
and the Software Systems Institute of the Technical University, TUHH, Hamburg. It
began in 1996 as a 5-year project and will be extended into an interdisciplinary R&D-
framework involving several Hamburg-based institutions.

For a short WEL overview we will concentrate on two project contributions:
- semantic modelling principles for WEL-design;
- personalized digital WEL libraries based on project-specific prototypes and their

use in Art History education.

WEL Semantic Modelling Principles. The WEL design is based – as is already the
BPI design – on the classical semantic data modelling principles [28], [6]:
aggregation, classification, generalization / specialization and association / navigation
(see figs. 2 and 3).

Fig. 4. Media card associated with (multiple) subject terms and with information on classifica-
tion work

However, it is important to note that the semantics of subject classes and their en-
tries originate from different semantic sources and, therefore, go beyond classical data
modelling (see also Sect. 4.2):



10 J.W. Schmidt et al.

- object semantics: seen from a data modelling point of view, subject class entries are
also entities of some object classes in the sense of object-oriented modelling. How-
ever, a subject class extent may be heterogeneous because its entries may describe
documents of different media – texts, images, videos etc. Therefore, subject class
entries viewed as objects may belong to different object classes – text, image, video
classes etc.

- content semantics: furthermore, all content described by the entries of the same
subject class shares some semantic key elements. All BPI documents referring, for
example, to the subject class “ruler” make use of graphical textual key icons such
as swords, crowns, scepters, horses etc.; similarly, the text documents associated
with a certain subject class contain overlapping sets of subject-related keywords.
Such sets of key icons capture essential parts of content and, thus, of subject term
semantics. Note that specialization of subject classes goes along with extension and
union of subject-related key icon sets while generalization relies on reduction and
intersection.

- completion semantics: in Sect. 2.1 we referred to the soft semantic constraint of
achieving best possible subject definition as “completion semantics”. Although this
may be considered more as an issue of class pragmatics than class semantics it im-
plies formal constraints on subject class extents. Since users of subject definitions
act under the assumption that the subject owner established a subject extent which
represents all relevant aspects of the owners subject prototype, any change of that
extent is primarily monotonic, i.e., extents of subject terms are only changed by
adding or replacing its entries. Therefore, references to subject class entries should
not become invalid.

Figure 4 shows a media card for St. Moritz together with the (multiple) subject terms
to which St. Moritz contributes. The example also links St. Moritz to details of the
classification process by which this card entered the WEL. This information is essen-
tial for the realization of project-oriented views on subject terms, or reference librar-
ies:
- thematic views (customization): projects usually concentrate on sub-areas of the all

encompassing “Index for the Political Iconography”;
- personalized views (personalization): they cope with the conceptual problems with

“completion semantics” mentioned above.
Initial experiences with both of these viewing mechanisms are outlined in the subse-
quent section.



Subject-Oriented Work: Lessons Learned from a Content Management Project 11

Subject-Oriented Work in Art History Education. A key experience of the WEL
project relates to the two dimensions of subject-oriented work: subject-orientation as a
thematic view (customization) and as an individualized view (personalization).
Speaking in terms of Digital Libraries both dimensions are approached by the WEL
concept of “reference libraries” (“Handbibliothek”), which are essentially SOWing
environments customized and personalized according to the requirements of
individual projects or persons [17].

Fig. 5. Thematic and personalized subject views for the “Mantua” seminar

Figure 5 outlines the use of customized and personalized SOWing environments in
an Art History seminar on “Mantua and the Gonzaga” [26]. The general BPI
(“Warnke-owned”) is first customized into a subject index for the “Mantua and the
Gonzaga” seminar project. The main objective of the individual student projects in
that seminar is to further personalize the seminar index, structurally and content-wise,
and to produce, for example, a project-specific subject index for topics such as “Stu-
diolo” or “Camera picta” [20]. Publicizing the final subject content in some form of
media document (see Fig. 6) - traditional print report or interactive website - consti-
tutes another seminar objective [34].



12 J.W. Schmidt et al.

Fig. 6. The “Studiolo” subject index publicized as a multimedia document

3 Towards a Generalized WEL-Model for Subject-Oriented Work

The prime experience gained from our interdisciplinary WEL project is a deeper in-
sight into the intertwining of SOWing entities and their working relationships. Con-
ceptually, the services of our SOWing platform are primarily based on four kinds of
entities which are straight-forward generalizations of the corresponding WEL entities:
- “work cases” as the basic abstraction of the acts and entities of interest in a domain;
- “case documents” which are abstract or physical entities reporting on such work;
- “case entries” which record the essence of work case documents;
- “subject terms” which, based on such case entries, structure the domain, define its

semantics, and give access to its documents and works.
Since all four notions are quite generic, there is ample space for generalizing in our
SOWing project the models and systems for subject-oriented work far beyond our
initial WEL approach.

In the subsequent sections we will outline an extended SOWing model and plat-
form and re-interpret the acronym WEL from “Warburg Electronic Library” to “Work
Explication Language”, very much in the sense of the definition of ontology as “a
theory regarding entities, especially abstract entities to be admitted into a language of
description” [35].

Subsequently, we discuss the four kinds of SOWing entities in more detail.



Subject-Oriented Work: Lessons Learned from a Content Management Project 13

3.1 On a Generic Notion of “Work”

Central to the content management support provided by our SOWing platform is a
generic notion of “work”. Our work concept is based on the WEL experience and is
characterized and modeled by three groups of properties (see also Fig. 2):
- work as a “project”, i.e., the circumstances under which work is performed;
- work as a “product”, i.e., a work’s result; and
- work as a “concept”, i.e., the conceptual idea behind a work.
Figure 7 relates these three work characteristics using a “work triangle” diagram. The
generalization of WEL work examples such as the one given by Fig. 2 is obvious.

The upper part of Fig. 8 depicts a second work case, similarly structured but rather
different in nature. Fig. 8.2 depicts a WEL work case done by a Mr. B. when produc-
ing a work document description of the Gonzaga-Mantegna-Minerva work case and
entering it into the WEL. While there may be only partial knowledge on the renais-
sance work case – essentially only Mantegna’s picture survived – the WEL work case
being supported and observed by the SOWing platform can receive an arbitrarily
extensive SOWing coverage.

This reflective capability is probably the most powerful and unique aspect of our
SOWing approach. Reflection provides the basis for a wide range of services for cus-
tomization and personalization, self-description and profiling and for all kinds of
guiding and tracing support [27].

Fig. 7. WEL work structure (work triangle)

Examples of WEL work are presented in Fig. 8. The lower part (Fig. 8.1) models a
specific work case by which a member of the Gonzaga family residing in Mantua
during the 15th century asked the artist Mantegna for a painting addressing the issue of
virtues and sins. Mantegna chose the goddess Minerva as the central motive and pre-
sented her expelling the sin out of the garden of virtue. This 15th century work case
may be reported by some publicized work document, most probably, however, the
case is just part of an Art Historian’s body of knowledge about the Italian renaissance.



14 J.W. Schmidt et al.

3.2 Work Case Documents

Work such as the Gonzaga-Mantegna-Minerva case of Fig. 8 is documented typically
in narrative form and presented by some multi-media documents – texts, images,
speech etc. and combinations thereof. In our SOWing approach such documents are
assumed to represent content in terms of the above three dimensions: work project,
work product and the concepts behind both (see also Fig. 7). This view on documents
is quite general and allows interpretation ranging from the rather informal but very
expressive documents of “Political Iconography” to partially formalized diagrams
such as flow charts and UML entities and to computer programs and operator instruc-
tions with a fully formalized semantics.

Fig. 8. WEL work graph: production work (Fig. 8.1) and description work (Fig. 8.2)

Work documents may also vary in terms of their completeness in the sense that the
work they report may be known only partially, for example, by its product. Many
examples can be found in Art History where most of the project knowledge is usually
lost and only the image survives (the opposite case also exists). Nevertheless, we
agree with our colleagues from Art History that products should never be considered
in isolation but always be recorded in the context of the project (persons, time, place,
tools, etc.) for which they were created. For documents produced within a computer-
ized environment this has partially become standard although there is no overall con-
cept of what to do with this information.

Note the dialectic character of our SOWing position in this point: on the one hand
side, work cases are assumed to be reported by documents, on the other hand all
documents – at least the ones produced by the SOWing environment and its tools –
are considered as work cases and, yet again, reported by work case documents and
entries.



Subject-Oriented Work: Lessons Learned from a Content Management Project 15

3.3 Work Case Entries

In the SOWing approach work case documents are described and recorded by work
case entries which establish the relationship between subject terms and their semantics
on one side and the work cases and their documentation on the other. Such case en-
tries generalize the media cards of the WEL system.

Conceptually there is a third relationship involved which associates a work case en-
try with a class of icons considered “representative” for the kind of work which is
described by the case. We use the term “icon” here in the sense of iconic signifier (as
opposed to indexical or symbolic signifiers, see, for example, [9]). For image docu-
ments icons specialize to iconographic signifiers, for text documents to keywords
(“Stichworte”) etc.

A case entry on an image and text document with content on the subject term
“ruler”, for example, will for its image part be described by characteristic icons from a
subject-specific icon set {crown, sword, scepter, ...}, for its textual part by a corre-
sponding set of keywords.

Seen from an object point of view, case entries are instances of media-specific ob-
ject classes (image, text, video classes etc.) while from a content perspective they
draw constraints from (hierarchies of) icon classes. Finally, from a subject-oriented
position, case entries become members of the extent of some subject classes (our old
WEL stack of media cards) thus contributing to the definition of their semantics.

In Sect. 4 we will relate and discuss these three perspectives in terms of class dia-
grams (Fig. 10).

3.4 Subject Definition Work

Subject term semantics is essentially defined extensionally by document descriptions.
Intentionally their semantics is captured in part by icon classes shared by such extents.
Both extensional and intensional semantics are related by the fact that each entry into
the subject term’s extent shows a characteristic profile over the icon class related to its
subject term. A specific image document contributing to the semantics of “ruler” will
not display the entire icon class for rulers, i.e., the set {crown, sword, scepter, ...} but
a characteristic subset of it, probably a crown and a sword in a prominent position
within the image.

Most of the production work on which the BPI is based typically took place outside
a computerized environment – usually the referenced iconographic work dates back
several centuries. Production work may, however, also mean the production of docu-
ments about the original iconographic work and such document work may well con-
tribute to or profit from a SOWing environment.

Description support being definitely a matter of the SOWing platform may, for ex-
ample, provide reference to other subject terms covered by the index [22]. For the
Gonzaga-Mantegna-Minerva case it may be quite enlightening to capture the reason
why Gonzaga ordered that picture by referring to some subject term “virtue” or its
generalization “political objectives” to which Machiavelli’s work “Il Principe”, a
successful handbook for renaissance rulers, contributed.



16 J.W. Schmidt et al.

Fig. 9. An overview of Subject-Oriented Work

Figure 9 gives an overview of the subject-oriented work and its support through a
SOWing platform. It relates production and description work to subject work.

As mentioned above, a major group of SOWing services is based on the fact that
“work is a first class citizen” in the SOWing world. This implies that work while being
supported by the system is automatically identified, described and associated with
work-related subject terms (project time and participants, product media and archives
etc.). Evaluating such terms provides the basis for substantially improved work sup-
port, e.g., work session management, work distribution, protection, personalization
etc.

4 The SOWing System

Our field studies provided us with a good basis for user requirements analysis of our
SOWing approach and our extensive prototyping experience allowed us us a deeper
insight into the architectural and functional alternatives of SOWing system design and
implementation.



Subject-Oriented Work: Lessons Learned from a Content Management Project 17

4.1 WEL Prototype Experience

The WEL prototypes developed so far are the major source of experience on which
the SOWing approach is based. The initial version was based on the Tycoon-2 persis-
tent programming environment, an object-oriented, higher-order programming lan-
guage with orthogonal persistence [16], [23]. Using a Tycoon-based acquisition and
cataloging tool the Computer Scientists, Art Historians and many students from both
departments digitized many thousands of images and transformed file cards from their
physical representation into a digital one. This work is still in progress. The descrip-
tive data in the card catalogue were entered and revised by Art Historians via a web-
based editor.

With the evolution of Java from a small object-oriented programming language for
embedded devices to a mainstream programming language for networked applications
the WEL system was moved to Java-related technology.

The current WEL version is based on an early version of a commercial Content
Management System (CMS) [5] which is entirely Java-based and resides on top of a
relational database management system.

For our current prototype we were particularly interested in understanding to what
extent features of commercial CMS technology meet the requirements of our SOWing
platform. It turned out that although the CMS provided several abstractions useful for
our SOWing data model important relationships between and inside the subject
classes could not be treated as first class objects. Furthermore, the modeling facilities
of commercial CMSs are not yet rich enough to meet the needs of our generic SOW-
ing approach. Commercial CMS technology concentrates on specific application do-
mains with editorial processes for more or less isolated units of work (e.g., news arti-
cles) with little association to other entities. SOWing requires, however, in addition to
storing and retrieving the document itself an extended functionality for the embedding
of documents into the SOWing context with all its relationships.

Commercial CMS and DBMS technology supports only the specific set of naviga-
tion methods predominant in their main application domain, and our prototype ran
into performance problems as soon as users left those default navigation paths. As a
consequence, we met the domain specific access requirements by introducing an addi-
tional application layer on top of the CMS.

Several graphical web-based user interfaces as well as GUI editors were developed
to enable various classes of users to browse through the subject index, create personal
indices and collect references to documents accessible via the global index.

In parallel to the Art History project the generic WEL system was adopted to main-
tain an index created for the management of concepts relevant in advertising. This was
and still is carried out in cooperation with a commercial agency from the advertising
industry.

4.2 Subject Classes, Object Classes, and Icon Classes

In Sect. 3 we introduced the four kinds of SOWing entities: work cases, case docu-
ments, case entries, and subject terms. While the former two (Sects. 3.1 and 3.2) are



18 J.W. Schmidt et al.

highly relevant for the conceptual foundation of our SOWing approach, the latter two
(Sects. 3.3 and 3.4) are also important for system implementation.

Case entries are related to subject terms by classification relationships. Subject
terms are structured in a hierarchy – the subject index – made up by subject term gen-
eralization and specialization.

As described in Sect. 2.1 the relationship between case entries and subject terms
has a double meaning:
- one the one hand, documents are classified by binding their case entries to subject

terms;
- on the other hand, each document contributes to the subject term’s definition.
The set of entries chosen to define a subject is supposed to be minimal; only entries
which introduce a new and relevant facet of the prototypical extent are added. In this
way subject indices reflect the domain knowledge from the perspective of the owner
of the subject index.

Subject indices are not only used to capture “primary knowledge” of domains but
also “secondary knowledge” as, for example,
- on the organizational and history of a community, including knowledge of users,

rights granted to them, etc. [8]
- on the layout and handling of documents, i.e., properties not directly related to their

content, e.g., (kind of ) origin, document types, quality, etc.
This leads to different types of subject indices some of which are used by the SOWing
system itself, e.g., user classification to handle project-specific access rights.

Since entries can contribute to more than one subject term definition they may be-
long to more than one subject extent maybe in different indices of the same or differ-
ent types. The semantics of multiple subsumption varies in each of the cases.

Several contributions define the semantics of the instantiation relationship:
- object semantics: technically, descriptions have a type (in the sense of a data type);
- content semantics: in addition to the attributes with object semantics, the use of

icons for content description determines a semantic type; the more special a subject
becomes the more icons the entries in its extent are expected to have;

- completion semantics: the extent of a subject term is supposed to fully describe its
semantics (at the current time, for the user who created it).

It is interesting to see how in our design of SOWing entities traditional elements of
object-oriented classes coexist with novel aspects of subject-oriented modelling. This
coexistence of object- and subject-oriented semantic elements is illustrated by the
diagram in Fig. 10 which is based on an extended UML notation.

The upper right third of the diagram shows a traditional class hierarchy of an ob-
ject-oriented model. On top is the class “Object” representing the root of the class
hierarchy. From this a class “Case Entry” is derived which has attributes for the fea-
tures which all kinds of case entries share. Subclasses of “Case Entry” are introduced
for each media type. These classes might introduce further features, e.g., painter for
images, author for texts. Instances (“entry” in the diagram) of such classes are con-
structed in the usual object-oriented manner: the object is created for a given class, so
that its structure is known for its whole lifetime.



Subject-Oriented Work: Lessons Learned from a Content Management Project 19

Case Entry

Subject

Object

Image Entry Text Entry

feature 1 : Type 1
...

feature n : Type n
icons : Icon Class

Ruler

Equestrian

napoleon : Equestrian Image Entry

...

painter : Artist author : User

Subject Index

... as Equestrian

icons={crown,...,horse,...}

Icon Class

icons : Set<Icon>

Ruler Icon Class

icons = {crown,...}

Saint

...

... as Saint

icons={crown,...,halo}

...

Fig. 10. Subject, object, and icon classes

Important for the SOWing model is the special attribute “icons” which is defined
by “Case Entry” and which represents references to an icon class. Icon classes de-
scribe sets of icons which relate to subject terms. Icons reflect the content of the de-
scribed document, e.g. keywords in a text or symbols in an image. As indicated in the
upper left of the diagram (Fig. 10), icon classes are ordered in a specialization rela-
tionship which is derived from the inclusion of the icon sets. We use the filled-in ar-
row head to visualize icon class specialization and a thick arrow head for icon class
“instantiation”.

Finally, the lower part of Fig. 10 shows a (UML-inspired) formulation of subject
classes. We use double-headed arrows for specialization and instantiation. Dual to the
(object) class “Object” we introduce a (subject) class “Subject” as the root of the
subject class hierarchy. Although subject terms and icon classes are only loosely re-



20 J.W. Schmidt et al.

lated, it is very likely that all the entries of the same subject class will have a similar
profile over the icons of the corresponding icon class.

The “Subject Index” to which a subject belongs defines the domain to which a sub-
ject term contributes. This models the perspectives under which the classification of a
description can be viewed. For any given application often only one index will be
considered at a time. However, personalization and customization will require the
SOWing system to cope internally with several indices simultaneously.

There are two fundamental uses of the structure shown in the diagram, Fig. 10:
- if a subject worker manually establishes the classification relationship between an

entry and a subject term (“entry” and “equestrian” in the example of Fig. 10), the
entry contributes to the subject term’s definition. For the related icon classes this
may mean that the icon class can be derived from or validated by the icons of the
entries in an extent;

- vice versa, icons assigned to a description can be matched against an icon class
which in return corresponds to a subject term. Using some distance function the
SOWing system can derive or propose the classification of an entry.

In this way the subject classification differs substantially from object classification: in
contrast to an object class a subject class does not define a uniform structure for all
members of its extent. In addition, subject class entries may be members in more than
one extent simultaneously and may change subject class membership during their
lifetime. In contrast, an entry in its role as object belongs to exactly one object class
and this membership is immutable over time.

4.3 Personalization Facilities

We substantiate some of the architectural decisions of the SOWing environment by
giving examples from the Warburg Electronic Library. First we look at a the personal-
ization [24] of a description work. Imagine the user downloads a case entry as the
following XML document:

<picture-card>
<title>Bonaparte Crossing ...</title>
<artist>David, Jacques-Louis</artist>

</picture-card>

Once a user has copied the description into his personal working environment he is
free to modify it at will and might end up with a document like the one shown below.

<picture-card>
<title>Napoleon Crossing ...</title>
<artist>/artistdb/artist4368.xml</artist>
<medium>Painting</medium>

</picture-card>

Clearly, three changes of a different nature were performed:
- a value change: from “Bonaparte” to “Napoleon”;
- a type change: “artist” now is a reference, no longer a value;
- an additional feature is added: “medium”.



Subject-Oriented Work: Lessons Learned from a Content Management Project 21

The latter two changes exemplify the semi-structured nature of the descriptions: part
of the personalized descriptions conforms to the schema the community chose for
descriptions. Another part was added by the user, freely choosing a tag name, the
elements content format, and the position where to integrate the new element. This is
the kind of liberty the subject workers expect to have in the SOWing environment.

When the community decides to accept and re-integrate the user’s contribution into
the community’s subject index it has to perform the data (eventually also the schema)
update [4]. The SOWing server discovers such type changes by tracking the descrip-
tion work [11].

4.4 Case Entry Generation from XML Documents

A SOWing user may submit a work case document in the form of the following XML
document:

<report>
In the <medium>Painting</medium>
<title>Napoleon Crossing ...</title> the artist
<artist>David, Jacques-Louis</artist> depicts
Napoleon riding ...

</report>

Then the SOWing system will start analyzing the above work document and generate
the following initial work case entry:

<picture-card>
<!-- according to the original conceptual model -->
<title>Napoleon Crossing ...</title>
<artist>David, Jacques-Louis</artist>
<!-- additional markup recognized -->
<medium>Painting</medium>

</picture-card>

This automatically generated version of a work case entry serves as the basis for the
description worker’s SOWing task.

4.5 SOWing Interfaces and External Tool Support

SOWing entities – work cases, documents, case entries, and subjects - may vary
widely by their degree of formalization ranging from rather informal entities (to be
mediated to humans) to fully formalized structures (to be read and processed by ma-
chines). Furthermore, SOWing entities may be consumed and produced by external
tools thus requiring a general interfacing technology to the world outside the SOWing
platform. A more detailed discussion in the context of XML can be found in Sect. 5.

Our vision of a SOWing system is to support a community of users in a long-term
process of sharing, evolving and partially formalizing their understanding of a com-
mon application domain – and not to force them to use a SOWing system. If such a



22 J.W. Schmidt et al.

system is to be used it must be possible to create a wide variety of external representa-
tions of the entities and relationships maintained by the system.

This is required for two reasons:
- Users want to import the content from such a system into their own working envi-

ronment (word processors, multimedia authoring tools, expert systems etc.). For
this purpose a portable external representation is needed which can be understood
by different software systems – at least in part.

- The second reason for a portable and even human readable format is the necessity
to facilitate the exchange of the data and the knowledge behind it between different
people. Especially those who do not possess an identical or compatible SOWing
system will need such an external representation. We consider the extensible
markup language as being useful in both scenarios.

On the other hand the SOWing system itself must also be able to process data from
various sources. Therefore, either converters between external data and the internal
SOWing data model have to be provided or well-defined interfaces to external repre-
sentations must be available.

5 XML for Subject-Oriented Work

In the previous sections we developed a scenario for a software environment which
supports and records subject-oriented work. As soon as the content maintained by
such a system is communicated to others or used cooperatively with different systems,
the question arises, how to represent content and knowledge about it in a system-
independent manner. The Extensible Markup Language and its standards [2], [15] are
intended to enhance content structure and coherence and, by doing so, to improve
content production and interchange.

Parallel to our work on the SOWing environment much work has been invested in
XML-based standards for various content-related services [1]. However, most of these
standardization efforts lack a common application scenario which could prove more
than the usefulness of isolated standards, e.g., by making two or more of them collabo-
rate. We regard our SOWing system as a cooperative platform for suites of XML-
based services.

5.1 XML and Documents

One application of XML in the scenarios mentioned above is its use as a platform-
independent notation for content exchange. XML can be read and processed by per-
sons as well as by machines. Processing in this context means that machines are able
to store XML documents and increase their coherence by performing certain consis-
tency checks, e.g., whether XML data are well-formed or valid according to a certain
document type definition. With pure XML, as stated in [10], only syntactical consis-
tency and interoperability can be achieved. If a target machine is supposed to go be-
yond that point reason about the content of an XML document, domain knowledge has



Subject-Oriented Work: Lessons Learned from a Content Management Project 23

to be hardwired into the processing machine and this knowledge has to be synchro-
nized with assumptions from the content author.

Under this assumption pure XML then could be used to facilitate communication
between partners who share a common understanding of the nature of the content
being exchanged.

5.2 XML and Semantics

Up to a certain degree XML can be used to represent subject terms and their relation-
ships. However, as [12] argues, important ontological relationships (e.g., “subclass-
of” or “instance-of”) can not be modeled directly by a XML document type definition.
Another problem arises because XML allows different ways to model the same rela-
tionship and no support for some notion of equivalence. Properties of a concept can be
modeled in at least two ways: as an XML element on its own or as an attribute of
another element. Supposing a document type description is used for some ontological
statement, the receiver of a document based on this statement has to “know” that this
document type represents an ontology and how it can be derived from the document
type definition. Currently several proposals for a common formalism for ontology
representation are being discussed [10], [12].

The Resource Description Framework (RDF, see, for example, [15]) provides
primitives which facilitate the representation of ontologies in a much more natural way
compared to (pure) XML. RDF can be implemented on top of XML and is suggested
to be used as a basic framework for the definition of common ontology interchange
languages, for example, OIL [7].

We expect that by working within the SOWing environment in combination with
the above standards we can substantially improve the re-use of publication work and
thus simplify the overall publication process. Furthermore, the understanding of
documents for readers outside the community for which a work was originally pub-
lished can be improved and machine reasoning about the works becomes feasible to
the extent to which as both, the SOWing system and the processing machine, share
subject index information.

5.3 XML and Activities

As mentioned earlier our notion of “work” refers not only to the result of a product
process, i.e., to documents on certain concepts or ideas, but to the entire process by
which the document is created. Through its reflective capabilities to observe the pro-
duction process the SOWing system can contribute to questions such as
- in which sequence were the production steps carried out ?
- how long did each production step take ?
- what are the influences leading to a concrete object production sequence ?
For works belonging to the past this information usually is not available or has to be
derived from other sources. For description work as carried out by the Art Historians
in the WEL project, however, information about the production process of such a



24 J.W. Schmidt et al.

description work can be collected almost automatically by the SOWing environment.
Work cases being “first class citizens” can themselves become subjects to later re-
search and one does not need to “guess” what the circumstances of a production may
have been but one knows what these circumstances were – at least to the extent the
SOWing environments model documents them.

In this sense the SOWing environment can document the process which led to a
certain document and enhance the understanding of the “work” behind the document.
On the other hand this process description can be used to derive recommendations for
future production processes in the sense of instructions that have to be carried out for
tasks similar to a successfully completed process [14]. Well-documented production
processes can serve as templates for future production and contribute to process stan-
dardization [25]. XML-based languages such as XRL (eXchangeable Routing Lan-
guage [31]) can be used to represent such processes.

In summary, we expect a twofold contribution when using XML as a common
SOWing interface: XML-based tools will substantially and rapidly enhance the SOW-
ing functionality and, in reverse, the SOWing model will give a semantic underpinning
and connectivity to XML services and thus significantly improve their usability.

6 Summary and Outlook

Our SOWing platform, experiments and the SOWing project as a whole aim at relat-
ing, organizing and defining subjects and documents as well as the work behind it. In
an interdisciplinary project with our Art History colleagues who are working in the
subject area of “Political Iconography” we gained substantial insight into their Sub-
ject-Oriented Working (SOWing) needs and into initial requirements for a generic
SOWing platform. In this paper we outlined the project, its basic models, their gener-
alization as well as our initial experiences with prototypical SOWing implementations
and compared our work with various XML-related activities.

On the modeling level we improved our understanding of
- the basic SOWing entities and their relationships;
- the notion of work, i.e., the production context of content;
- the role of key icons and key words for content-based subject definition.
On the system level SOWing project is currently investigating the requirements for
- a generator-based architecture for SOWing entities and relationships;
- reflective system technology and its use for advanced SOWing services;
- customized and personalized SOWing indices;
- XML-based tool interoperability.
Future large scale content-oriented project work will have to interact with a substantial
number of SOWing indices and, therefore, requires a technology for “plugable SOW-
ing arrays”. SOWing indices have to deliver their content through a wide variety of
document types ranging from media documents laid out for human interaction to struc-
tured (and typed) documents for machine consumption. Finally, SOWing support for
the modeling, management and enactment of content-oriented work has to be further
improved.



Subject-Oriented Work: Lessons Learned from a Content Management Project 25

Acknowledgement. We would like to thank the Ministry for Science and Research,
County of Hamburg, and the Warburg Stiftung, Hamburg, for their continuous support
of our research. In addition we gratefully acknowledge a research grant from the
Deutsche Forschungsgemeinschaft, DFG, in support of our R&D project on
“Cooperative Reference Libraries”.

References

1. Berners-Lee, Tim, Fischetti, Mark: Weaving the Web; the original design and ultimate
destiny of the World Wide Web by its inventor. Harper, San Francisco (2000)

2. Bray, Tim, Paoli, Jean, Sperberg-McQueen, C. M., Maler, Eve: Extensible Markup Lan-
guage (XML) 1.0 (2nd Edition). http://www.w3.org/TR/2000/REC-xml-20001006 (2000)

3. Bruhn, M.: The Warburg Electronic Library in Hamburg: A Digital Index of Political Ico-
nography. In: Visual Resources, Vol XV (1999) 405-423

4. Buckingham Shum, Simon: Negotiating the Construction and Reconstruction of Organiza-
tional Memories. Journal of Universal Computer Science, vol. 3, no. 8 (1997) 899-928

5. CoreMedia AG: Homepage. http://www.coremedia.com (2001)
6. Coulter, Neal, French, James, Glinert, Ephraim, Horton, Thomas, Mead, Nancy, Rada, Roy,

Ralston, Craig, Rodkin, Anthony, Rous, Bernard, Tucker, Allen, Wegner, Peter, Weiss, Eric,
Wierzbicki, Carol: ACM Computing Classification System 1998: Current Status and Future
Maintenance. Technical report, http://www.acm.org/class/1998/ccsup.pdf (1998)

7. Cover, R.: Ontology Interchange Language. http://xml.coverpages.org/oil.html (2001)
8. De Michelis, Giorgio, Dubois, Eric, Jarke, Matthias, Matthes, Florian, Mylopoulos, John,

Schmidt, Joachim W., Woo, Carson, Yu, Eric: A Three-Faceted View of Information Sys-
tems. In: Communications of the ACM, 41(12) (1998) 64-70

9. Deacon, Terrence W.: The Symbolic Species. The co-evolution of language and the brain.
W. W. Norton & Company, New York/London (1997)

10. Decker, S., van Harmelen, F., Broekstra, J., Erdmann, M., Fensel, D., Horrocks, I., Klein,
M., Melnik, S.: The semantic web: The roles of xml and rdf. In: IEEE Expert, 15(3) (2000)

11. Dourish, P., Bellotti, V.: Awareness and Coordination in Shared Workspaces. In: Proceed-
ings of ACM CSCW'92 Conference on Computer-supported Cooperative Work, ACM-
Press (1992) 107-114

12. Fensel, D.: Relating Ontology Languages and Web Standards. In: Informatik und
Wirtschaftsinformatik. Modellierung 2000, Foelbach Verlag (2000)

13. Gruber, T. R.: A translation approach to portable ontology specifications. Technical Report
KSL 92-71, Computer Science Department, Stanford University, California (1993)

14. Khoshafian, Setrag, Buckiewicz, Marek: Introduction to Groupware, Workflow, and Work-
group Computing. John Wiley & Sons, Inc., New York (1995)

15. Lassila, O., Swick, R. R.: Resource Description Framework (RDF) Model and Syntax
Specification. Recommendation. W3C. http://www.w3.org/TR/REC-rdf-syntax/ (2000)

16. Matthes, F., Schröder, G., Schmidt, J.W.: Tycoon: A Scalable and Interoperable Persistent
System Environment. In: Atkinson, Malcom P., Welland, Ray (eds.): Fully Integrated Data
Environments, ESPRIT Basic Research Series, Springer-Verlag (2000) 365-381

17. Maurer, Hermann, Lennon, Jennifer: Digital Libraries as Learning and Teaching Support.
In: Journal of Universal Computer Science, vol. 1, no. 11 (1995) 719-727

18. McLuhan, Marshall: Understanding Media. The Extensions of Man. The MIT Press, Cam-
bridge/Massachusetts/London (1964, 1994)



26 J.W. Schmidt et al.

19. Niederée, C., Hattendorf, C., Müßig, S. (with J.W. Schmidt und M. Warnke): Warburg
Electronic Library – Eine digitale Bibliothek für die Politische Ikonographie In: uni-hh
Forschung, Beiträge aus der Universität Hamburg, XXXI (1997) 6-16.

20. Nürnberg, Peter J., Schneider, Erich R., Leggett, John J.: Designing Digital Libraries for
the Hyperliterate Age. In: Journal of Universal Computer Science, 2 (9) (1996) 610-622

21. Raulf, M., Müller, R., Matthes, F., Scheunert, K.J., Schmidt, J.W.: Subject-oriented Docu-
ment Administration for Internet-based Project Management (in German). In: Proceedings
“Management and Controlling of IT-Projects”, dpunkt.verlag, Heidelberg (2001)

22. Rostek, Lothar, Möhr, Wiebke, Fischer, Dietrich: Weaving a Web: The Structure and Crea-
tion of an Object Network Representing an Electronic Reference Work. In: Fankhauser, P.,
Ockenfeld, M. (eds.): Integrated Publication and Information Systems. 10 Years of Re-
search and Development at GMD-IPSI, Sankt Augustin: GMD (1993) 189-199

23. Schmidt, J. W., Matthes, F.: The DBPL Project: Advances in Modular Database Pro-
gramming. Information Systems, 19(2) (1994) 121-140

24. Schmidt, J.W., Schröder, G., Niederée, C., Matthes, F.: Linguistic and Architectural Re-
quirements for Personalized Digital Libraries. In: International Journal on Digital Libraries,
1(1) (1997)

25. Schmidt, Joachim W., Sehring, Hans-Werner: Dockets: A Model for Adding Value to
Content. In: Akoka, Jacky, Bouzeghoub, Mokrane, Comyn-Wattiau, Isabelle, Métais,
Elisabeth (eds): Proceedings of the 18th International Conference on Conceptual Modeling,
volume 1728 of Lecture Notes in Computer Science, Springer-Verlag (1999) 248-262

26. Schmidt, Joachim W., Sehring, Hans-Werner, Warnke, Martin: The Index for Political
Iconography and the Warburg Electronic Library (in German). In: Proceedings of the In-
ternational Symposium on “Archiving Processes”, Köln (2001)

27. Simone, Carla, Divitini, Monica: Ariadne: Supporting Coordination through a Flexible Use
of the Knowledge on Work Processes. In: Journal of Universal Computer Science, vol. 3,
no. 8 (1997) 865-898

28. Smith, John Miles, Smith, Diane C. P.: Database Abstractions: Aggregation and Generali-
zation. In: TODS 2(2) (1977) 105-133

29. Sowa, John F.: Knowledge Representation, Logical, Philosophical, and Computational
Foundations. Brooks/Cole, Thomson Learning (2000)

30. Svenonius, Elaine: The Intellectual Foundation of Information Organization. The MIT
Press, Cambridge/Massachusetts/London, England (2000)

31. van der Aalst, W. M. P., Kumar, A.: XML Based Schema Definition for Support of Inter-
organizational Workflow.
http://tmitwww.tm.tue.nl/staff/wvdaalst/Workflow/xrl/isr01-5.pdf

32. van Waal, Henri: ICONCLASS – An iconographic classification system. North-Holland
Publishing Company, Amsterdam/Oxford/New York, completed and edited by L.D. Cou-
prie, R.H. Fuchs, E. Tholen, G. Vellekoop, a.o. (1973-85)

33. Warnke, Martin: Bildindex zur politischen Ikonographie. Forschungsstelle Politische
Ikonographie, Kunstgeschichtliches Seminar der Universität Hamburg (1996)

34. Warnke, Martin (ed.): Der Bilderatlas Mnemosyne. Unter Mitarbeit von Claudia Brink.
Akademie Verlag, Berlin (2000)

35. Webster’s Third New International Dictionary of the English Language, Chicago (1996)



Query Optimization through Removing Dead
Subqueries

Jacek P�lodzień1 and Kazimierz Subieta2,1

1 Institute of Computer Science PAS, Warsaw, Poland
{jpl,subieta}@ipipan.waw.pl

2 Polish-Japanese Institute of Information Technology, Warsaw, Poland

Abstract. A dead subquery is a part of a query not contributing to the
final query result. Dead subqueries appear mostly due to querying views.
A method of detecting and eliminating dead subqueries is presented. It
assumes that views are processed by query modification, which macro-
substitutes a view invocation with the corresponding view definition.
The method is founded on a new semantic framework of object-oriented
query languages, referred to as the stack-based approach. Dead parts are
detected through static (compile-time) analysis of scoping and binding
properties for names occurring in a query. The method is explained by
a pseudo-code algorithm and illustrated by examples.

1 Introduction

A disadvantage of using virtual (non-materialized) database views is that a view
often calculates more than it is necessary in a particular view invocation. For
example, a view calculates, among others, average salaries in departments, but
in a particular query invoking the view these values are not used. Hence the
straightforward approach to view processing may result in a significant waste of
processing time. The problem has been partly solved for relational query lan-
guages through the technique known as query modification [8]: a view definition
is treated as a macro-definition, where each view invocation is textually substi-
tuted with the query from the body of the view definition. Then, the parts of
the view definition not used in a particular query are removed from the resulting
query. Such parts are called dead subqueries (parts), because they do not con-
tribute to the final result. (Dead subqueries may also appear in queries without
views; however, this is rather rare.)

Query modification has been adopted and generalized for object-oriented
query languages such as OQL [12]. This technique prepares a foundation for
our method of detecting and removing dead subqueries. Such optimization is
performed through rewriting a query into a semantically equivalent query having
no dead subqueries. After removing dead subqueries, the resulting query can be
further processed by other optimization methods, e.g. based on factoring out
independent subqueries, changing the order of operators, indices [4,5,6].

In a general case of object-oriented query languages and views, the problem
of removing dead subqueries is not easy. A query resulting from query modifica-
tion can be complex, nested, can involve inheritance and encapsulation, and can

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 27–40, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



28 J. P�lodzień and K. Subieta

invoke methods or virtual attributes. It can also contain definitions of auxiliary
names (i.e., correlation variables, variables bound by quantifiers, etc) and can be
built upon various operators such as selection, dot (i.e., projection/navigation),
dependent join, quantifiers, arithmetic functions, aggregate functions, and oth-
ers. Moreover, views can be nested; i.e. a particular view can invoke other views.

As far as we have investigated the literature, there is no other paper consider-
ing the problem of removing dead subqueries for object-oriented query languages
and views. Probably this is caused by the fact that object views are not devel-
oped to a satisfactory degree, despite many papers (for a discussion see [9]).

Nonetheless, a related idea is discussed for the relational approach. For in-
stance, in [3] the authors consider a case when redundant joins of base relations
appear as a result of using views defined (directly or indirectly) against those
relations. A similarity between the method discussed in [3] and our solution is
that the general idea of both techniques is to avoid performing unnecessary op-
erations. The main difference is that [3] deals with joins, which are the most
expensive operations in relational databases, and is restricted to CPS-queries,
while our method concerns any (arbitrarily complex) subqueries whose results
are not used. Joins are not the case in the object approach, because foreign keys
are usually replaced with links. Our approach has potential to cover cases when
dead subqueries are not connected by joins.

Our (fairly general) approach assumes that object views are first-class stored
functional procedures [9]. To deal with scoping and binding rules for names
occurring in queries/programs, we follow the Stack-Based Approach (SBA) to
object-oriented query languages [5,10,11]. The approach assumes that some query
operators (where, dot, dependent/navigational join, quantifiers, etc) act on an
environment stack similarly to program blocks or procedures, that is, they open
a new section for binding names.

In our research we focus on static (i.e., compile-time) query optimization. In
order to gather all the information that is needed to determine whether a query
can be optimized, a special phase of query processing – so-called static analysis –
is performed [7]. During static analysis we simulate the behavior of the run-time
query result stack (QRES) and the environment stack (ES) through the corre-
sponding static stacks (i.e., compile-time versions of ES and QRES). They keep
signatures of values returned by queries and signatures of run-time environment
stack sections and subsections. Recursive analysis of these signatures and their
relationships with the syntax tree of the processed query makes it possible to
detect unused environment stack subsections, then to navigate from these sub-
sections to corresponding parts of the query syntax tree. These parts are cut off;
i.e. dead subqueries are removed.

The general query processing architecture is presented in Fig. 1. First, the
text of a query is parsed and its syntax tree is constructed. Then, the query
is optimized by rewriting. Static analysis (performed by a query optimizer) in-
volves a metabase (a special data structure obtained from a database schema), a
structure simulating the environment stack (static ES denoted by S ES), and a
structure simulating the query result stack (static QRES denoted by S QRES).



Query Optimization through Removing Dead Subqueries 29

��������	
�
��� �����������	��

�������� ��	� ��
�	�
�����

�����

��������

	�

��������


�	�

�����

�����������

��	�
������

�����������

���������

����������
������

Fig. 1. General architecture of query processing

After optimization the query is evaluated; the evaluation involves run time struc-
tures, that is, an object store, ES and QRES.

An important aspect of query optimization is a cost model. However, because
removing dead subqueries always improves performance, it should be applied
whenever possible. As a consequence, there is no need to assess performance
improvement during optimization, even for cost-based optimization. Therefore,
we do not consider a cost model in this paper.

The queries in the paper are defined for an example database whose schema
(the class diagram in a little modified UML) is shown in Fig. 2. The classes
Lecture, Student, Professor and Faculty model lectures attended by students
and given by professors working in faculties, respectively. Professor objects can
contain multiple complex prev job subobjects (previous jobs). The name of a
class, attribute, etc, is followed by its cardinality, unless it is 1. All the properties
are public.

�����������	
���

��������	

����������

����������
��������������

�����	�����
�����

�����	������������
�����

���	����	������	��

��	
���������

����	�����
�����

���	������
�����

����	��������

���������
���
�����

��������
�����
�����

��������

�� ���������

�������������

�!�	�����
�����

�������������
�����

�	���

�	�������

����	�	������	��

 ��������������

 �	�����
�����

��	�����
�����

Fig. 2. The class diagram of the example database



30 J. P�lodzień and K. Subieta

The rest of the paper is organized as follows. Section 2 presents a few SBA
concepts important for the paper. Section 3 describes general properties of dead
subqueries. In Sect. 4 we discuss in detail our method of finding and removing
a dead subquery through rewriting. We also present an example of applying the
method to a query. In Sect. 5 we discuss how to take into account all dead sub-
queries in a query. In Sect. 6 we extend our discussion by considering other cases
when dead parts can appear. Section 7 concludes our discussion.

2 Essential Concepts

SBA is an attempt to build a uniform semantic foundation for integrated query
and programming languages. The approach is abstract and universal, which
makes it relevant to a general object model being an abstraction over e.g. ODMG
OQL [2] and XML models. SBA has its own query language - SBQL, which is
a syntactic variant of OQL with a fully formalized semantics. In this section
we explain a few SBA concepts essential for our method of removing dead sub-
queries. However, we assume that the reader is at least a little familiar with the
general idea of SBA.

2.1 Subsections

Normally, an ES section induced by a particular non-algebraic query operator
consists of all binders that are returned by the nested function for the currently
being processed row of a result table. Thus we cannot distinguish between binders
created for the results of different subqueries. To make such a distinction possible
we introduce the concept of subsection. It is a part of an ES section, which
contains binders constructed for one element of the row currently being processed
for which a non-algebraic operator has opened that section.

Subsections make it possible to assign each binder of a given section to the
appropriate subquery of a query being evaluated (represented as a syntax tree).
Each subsection contributes to partial results of further subqueries, which in
turn generate other subsections, etc., up to achieving the final result. Through
assigning each subsection the node of the corresponding syntax tree of the query,
we can propagate identifiers of tree nodes in order to obtain information which
subsections contribute to the result of an outer query. This process is performed
recursively. Because subsections are associated 1:1 with subqueries (i.e., the cor-
responding syntax subtrees), in this manner we detect dead subqueries (i.e.,
subqueries associated with unused subsections on ES).

This process is performed on S ES and S QRES. During static analysis we
deal with section signatures and table signatures, which model run-time ES sec-
tions and query results, respectively. To detect dead subqueries we use subsection
signatures, which model run-time subsections. This part of static analysis is dis-
cussed in detail in Sect. 4.



Query Optimization through Removing Dead Subqueries 31

2.2 Views and Query Modification

Views1 raise the level of abstraction and modularity while building an applica-
tion, but may result in poor performance due to overhead connected with eval-
uation of a view during each invocation. To deal with this problem, in relational
databases queries invoking views are optimized through query modification. It
combines a query containing view invocations with the definitions of the views
being invoked. The resulting query has no references to views and can be op-
timized at a textual level by rewriting rules. The advantage of this technique
is twofold. First, it makes it possible to avoid performance overhead related to
processing views. Second, it enables to use other optimization methods, e.g. in-
dices. For these qualities we have adopted the query modification technique to
object-oriented queries [12].

In SBA views are treated as first-class (i.e., stored in a database) functional
procedures that can return a collection [11]. They can be defined by a single query
or by a sequence of statements accomplishing a complex algorithm, possibly
with a local environment. Moreover, they enable the programmer to compose a
virtual object from several stored objects. Such views can be recursive, can have
parameters, and can be updateable. The idea of views in SBA supports a fairly
general object model including classes, methods, inheritance, etc.

Assuming some discipline concerning the functionality, syntax and seman-
tics of view definitions, the query modification is reduced to regular macro-
substitution. Such an approach to views is assumed in OQL [2] through the
”define” clause. Query languages and views for XML databases are currently
the subject of extensive research, but there is little agreement concerning this
issue, see e.g. [1].

In this section we discuss view processing in the context of query optimization
based on rewriting. In SBQL views are defined as follows (we omit typing):
view Freshmen
begin

return Student where year = 1
end;
Functions, like the one above, can be invoked in queries; an example (”get names
and ages of freshmen older than 30”) is presented below:
(Freshmen where age > 30).(name, age)
This query is evaluated as follows. First, the name Freshmen is bound in the
ES base section; then the function is invoked. It has no parameters and its local
environment is empty, so the ES section for this invocation will contain only
the return address. The body of Freshmen consists of a single query which is
evaluated in the standard way. The result of this query consists of references to
appropriate Student objects. Then, the function is terminated and the ES section
implied by that function is popped. Next, the result returned by Freshmen is
processed by the where operator: the result contains references to those Student

1 We deal only with virtual views. Materialized views present another subject, not
relevant to this paper.



32 J. P�lodzień and K. Subieta

objects, for which the value of the age attribute is greater than forty. Then, this
result is processed by the dot. The final result consists of pairs of references to
the name and age subobjects for the selected Student objects.

The functions, introduced as views, possess the following properties:
• They do not introduce their own local environments.
• They have no parameters.
• They are dynamically bound.
• The only statement of their bodies is a single query.

Functions having these properties are semantically equivalent to macro-defi-
nitions. We have constructed the syntax and semantics of SBQL in such a way
that it is fully orthogonal with respect to combination of any queries, includ-
ing queries containing auxiliary names (e.g., names defined by the as operator,
variables bound by quantifiers, new names used in view definitions, etc.). For
example, after query modification the above query will have the form:
((Student where year = 1) where age > 30).(name, age)

Thus (in contrast to [8]) our query modification method is extremely simple:
we just textually macro-substitute a view invocation with the body of this view.
As will be shown in further examples, new names introduced in the view defini-
tion for attributes of virtual objects present for us no irregularity or difficulty.
For a more detailed discussion of the issue see [12].

3 Properties of Dead Subqueries

While searching for dead subqueries we have to exclude subqueries that create
directly or indirectly the result of a query. For instance, in the query
Professor �� (works in.Faculty)
the subqueries Professor and works in.Faculty are not dead because their results
are directly parts of the result of the whole query. Similarly, in the query
Professor.name
the subquery Professor is not dead because it indirectly contributes to the final
result. Subqueries that do not satisfy either of those two conditions are dead and
can be removed. For example, in the query
(Professor �� (works in.Faculty)).age
the subquery works in.Faculty does not contribute to the result of the query
either directly or indirectly and thus is dead.

In some (rare) cases subqueries that are apparently dead cannot be removed.
Due to space limit we do not discuss this degenerated case in the paper.

Before discussing our method for detecting dead subqueries we present a few
examples and discuss the general idea.

3.1 Examples of Dead Subqueries

The most frequent case when a query has dead subqueries is when it contains
a view invocation and performs navigation starting from the result returned



Query Optimization through Removing Dead Subqueries 33

by the view. Let us show this by an example. The view below gets for each
professor his/her name, salary, and calculates a bonus he/she should receive,
giving them auxiliary names n, s, and b, respectively. The view can be considered
the definition of virtual objects named ProfNameSalaryBonus having attributes
n, s, and b.
view ProfNameSalaryBonus
begin

return Professor.
(name as n, salary as s, ((0.5*salary + 10*age)*count(gives)) as b)

end;
To retrieve through this view the names of all professors stored in a database,
we have to ask the following query:
ProfNameSalaryBonus.n
After macro-substitution it has the form:
(Professor.

(name as n, salary as s, ((0.5*salary + 10*age)*count(gives)) as b)).n
Note that the final projection (i.e. ”.n”), which creates the final result of the

whole query, refers to the result of the subquery name as n but does not refer to
the results of the subqueries salary as s and ((0.5*salary + 10*age)*count(gives))
as b. Hence the latter two subqueries are dead and can be removed. After the
transformation the query has the form (Professor.(name as n)).n which can be
further rewritten to Professor.name by another optimization method (removing
unnecessary auxiliary names [4]).

Another non-algebraic operator that may cause a subquery to be dead is a
quantifier. The analogy with the case for the dot operator is especially well seen
if a query is written in the form reflecting the schema of its evaluation, that is,
if quantifiers are used as infix operators [4].

3.2 Summary

As we have discussed, a query may have dead subqueries if it contains dot
operators or quantifiers. The reason is that a dot and quantifiers have a special
property: it is possible for them to consume only a part of the result of their left
subquery, which makes the rest of that left operand not contribute to the result
of the entire query.

Other non-algebraic operators considered in SBA, like a selection or a de-
pendent join, do not have this property. For example, �� consumes the whole
result of its left subquery thus does not cause any subquery to be dead. The
where operator can use only a part of the result of its left operand, but the
whole of that left subquery determines the result of a query. This means that
the selection operator does not cause any subquery to be dead either (with some
exceptions; see Sect. 6). We illustrate this by the following query (”get professors
and lectures provided by them assuming that professors are older than fifty”):
(Professor �� (gives.Lecture)) where age > 50



34 J. P�lodzień and K. Subieta

Obviously, it is impossible to find a query after where which will cause that
some subquery before where will be dead. A similar property holds for ��.

4 Detecting Dead Subqueries

In order to optimize a query with regard to dead parts, a modified static analysis
is required. In comparison to [7], a little modified versions of the static eval proce-
dure and the static nested function are used: ds static eval and ds static nested,
respectively. Moreover, the concept of signatures must be modified to keep the
following additional information:
• In a modified table signature (on S QRES), each element is augmented with
a pointer to the root of the appropriate syntax query subtree (representing a sub-
query which returns the result modeled by this element).
• Similarly, in a modified section signature (on S ES), each subsection signa-
ture is augmented with a pointer to the root of the appropriate syntax query
subtree. Bottom sections’ signatures (for which subdivision into subsections is
irrelevant) are augmented with NULL pointers.

Additionally, while binding a name in some subsection signature, the sub-
query in the syntax tree, for the result of which that signature was built, is
flagged as ”REFERRED TO”. This flag means that this particular query syn-
tax subtree has been used to evaluate its outer query (hence the corresponding
subquery is not dead). A part of the ds static eval procedure is presented below;
it covers only the case of non-algebraic operators after both q1 and q2 were
evaluated but before the final result is created. For details and other cases, e.g.,
algebraic operators, see [4].

Before applying ds static eval to a given query we can scan its definition
to check whether it can potentially have dead parts, that is, if it contains dots
and/or quantifiers. If it does not, then we know that it has no dead parts; we do
not have to use the ds static eval procedure to optimize it.

The auxiliary function Subquery(ss) returns the pointer to the subquery in
the syntax tree for the result of which (sub)section signature ss was built; for a
bottom section signature it returns NULL.

if (θ ∈ {dot, ∀, ∃}) then
for each subsection signature ss in new scope do
(*check if that (sub)result of q 1 is used*)
if (the subquery pointed to by Subquery (ss ) is not

REFERRED TO) then (*it’s dead*)
begin

if (the subquery pointed to by Subquery (ss ) is
the right operand of a dot operator) then

(*remove that dead part and a ’’future’’ dead part*)
remove that dot and its both subqueries;

else
(*remove only the dead part*)
remove the subquery pointed to by Subquery (ss );



Query Optimization through Removing Dead Subqueries 35

remove the operator connecting the eliminated
part to the rest of the whole query;
remove from q1result the element for which ss was
constructed;

end;

Note that because in queries of the form q1 θ q2 (where θ is a dot or quanti-
fier) only subquery q2 can make use of the result of q1 when evaluation of q1 θ
q2 ends, the result of q1 cannot be used by any subquery anymore. Therefore,
right after that evaluation we check whether the result of q1 was used: we do
it by checking in the syntax tree which parts of the scope opened for the result
of q1 were referred to. Those that were not referred to will not be referred to
afterward, thus the corresponding subqueries are dead and can be removed.

In the case when a dead part is the right operand of a dot operator, we remove
not only that dead part, but also the left operand of that dot operator, since after
removing its right operand its left operand would become dead. Additionally, we
remove from the S QRES table signature those elements that are the results of
those dead parts, because we do not need to analyze them any longer.

Note that since the algorithm is performed at compile time, its cost does not
influence the cost of run-time query processing.

Example

We will explain our method by a detailed example. The view
view LectProfManyCredits
begin

return (Lecture �� given by.Professor) where credits > 5
end;
returns lectures whose credits are greater than five together with the professors
giving them. To get only the subjects of those lectures via this view, we can ask
the query
LectProfManyCredits.subject
After macro-substitution it has the form
((Lecture �� given by.Professor) where credits > 5).subject (i)
Its syntax tree is shown in Fig. 3 (we omit non-terminal grammar symbol nodes
that appear in this tree).

Query (i) contains dot operators, so it may have dead parts. The states of
the static stacks during a modified static analysis of the query are presented in
figures from Fig. 4 to Fig. 7. For each name being bound we show a pair denoting
the stack size and the binding level, and for each non-algebraic operator being
evaluated we show the number of the section it opens. If the section signature in
which a name is bound consists of more than one subsection signature, we label
each subsection signature by augmenting the number of the section signature
with a, b, c, etc, where a denotes the leftmost one. Pointers to subqueries in the
syntax tree are designated by invocations of the Root(query) function, which
returns the pointer to the root of (sub)query query in its syntax tree.



36 J. P�lodzień and K. Subieta

�

����� �������

������������

�����	
��������

�� ��

	����
� �
����� �

������� �
������


������������

�����	����

������������

�����	����

�

Fig. 3. The syntax tree for query (i)

�����

����	
	�	����������

������
��������

�����������������������������

���������	���
���	����

���������
�������

���������	���
���	����

���������������
����������������

	��
���������	
��

	����

��������
��		
��

�����������������

�������������������

�������������������

����

	��
���������	
��

	����

��������
��		
��

�����������������

�������������������

�������������������

����

������������������������������


����������	�������

������
����������	�

���������������������������

���������������������

�������������

	��
���������	
��

	����

��������
��		
��

�����������������

�������������������

�������������������

����

���������	���
���	����

�����������������������
��������������������������

����������������������	�
����
�

����������������������������


����������	�������

������
����������	�

���������������������������

���������������������

�������������

	��
���������	
��

	����

��������
��		
��

�����������������

�������������������

�������������������

����

���������	���
���	����

�����������������������
���������������������������������������

	����

��������
��		
��

�������	�
���


����������	�������

������
����������	�

���������������������������

���������������������

�������������

	��
���������	
��

	����

��������
��		
��

�����������������

�������������������

�������������������

����

����������������������	�
�����

�����������������������������

Fig. 4. The first part of the analysis

����������	
������	�����

���������������	�
������������
�����������������������������������������������

�����������������������

��������������

��������������	�
��

�����������
������

����
���������������������

��	�
��������������

�����	
����
�

�����
�����������

�����������������������

�����
�������������

�������������
�����

������������
�����

����

���������������������	
����
���

�����������������������������

������
����������������
����

����������	
������	�����

���������������	�
���������������

��������
�����������������
�����

���������������������	
����
���

�����
�����������

�����������������������

�����
�������������

�������������
�����

������������
�����

����

����������	
������	�����

�������	
���
����������

��������
����������������
�����

��������������������	
����
���

�����
�����������

�����������������������

�����
�������������

�������������
�����

������������
�����

����


������������

�����������

����������������

���	�������������	���

�������
������������

��	�����������

�����	
����
�

��������������	�
��

�����������
������

����
���������������������

��	�
��������������

����������
��

����������	
������	�����

�������	
����������
������������������������������

�����
�����������

�����������������������

�����
�������������

�������������
�����

������������
�����

����


������������

�����������

����������������

���	�������������	���

�������
������������

��	�����������

�����	
����
�

��������������	�
��

�����������
������

����
���������������������

��	�
��������������

����������
��

����
�������������
������

�������
����������������
�����

��������������������	
����
���

Fig. 5. The second part of the analysis



Query Optimization through Removing Dead Subqueries 37

������������	�
��	�	��
�����

����������������������

���	�������������	�������
�


���	����	���������	����	��
���

���	
���������������	
��������
�

������������	�
��	�	��
�����

������������������������

�������

���	�������������	�������
��



���	����	��������	����	��
���

���	
��������������	
��������
�

������������	�
��	�	��
�����

�������������������������


���	����	���������	����	��
���

���	
���������������	
��������
�

��������	
������

��	��������	
���������

����������	��	�����

����������	����	���

����������	���	����

��

��������	
������

��	��������	
���������

����������	��	�����

����������	����	���

����������	���	����

��

�������	�����

������	����

���������	�������

�����������	���������

�����������	���������

��������	������

����	
��������


����������	�	������

����������	��������

��������������	������������

�����������	���������

����	����	��


��������	
������

��	��������	
���������

����������	��	�����

����������	����	���

����������	���	����

��

�������	�����

������	����

���������	�������

�����������	���������

�����������	���������

��������	������

����	
��������


����������	�	������

����������	��������

��������������	������������

�����������	���������

����	����	��


Fig. 6. The third part of the analysis

������������	�
��	�	��
�����

��������������������������
�������������������������������������������

������������	�
��	�	��
�����

���������������������������	
����
������������������������������������������������

�����
�	���	������

������	�
����	����

���	�������

�����������������	�������
���

������	�

��������	���	�

��
��

������������
���

��������������	�

���

��	��������������

����	�������������

���	��������������

��

���
������������	
������
�

������������������	�������
���

������	�

���������	���	�

��
�� ����
������������	
������
��

������������
���

��������������	�

���

��	��������������

����	�������������

���	��������������

��

������������

����������

���������
������

�������
������������

���������������
����

������������
�

����	���	�

��


�	
�������
�������

����������������
�

���������
����������������

������
�������������

����	�������


������������
���

��������������	�

���

��	��������������

����	�������������

���	��������������

��

������������

����������

���������
������

�������
������������

���������������
����

������������
�

����	���	�

��


�	
�������
�������

����������������
�

���������
����������������

������
�������������

����	�������


���������	
���	����

��
�������
���

���������	
���	����


��
�������
���

Fig. 7. The fourth part of the analysis

In Figs. 5, 6, and 7 we present the section signature (at the top of S ES)
containing subsection signatures for subqueries (a) and (b). No bindings through
the entire analysis in the right subsection corresponding to the subquery (b)
means that the subquery given by.Professor is dead.

We optimize (i) by pruning its syntax tree: we cut off the subtree modeling
the dead part (along with ��). The new, optimized form of the syntax tree is
shown in Fig. 8. It models the query (Lecture where credits > 5).subject.



38 J. P�lodzień and K. Subieta

�

����� �������

������������

�����	
��������

��	����
�

�
����� �

Fig. 8. The form of the syntax tree for query (i) without the dead subquery

5 How to Rid a Query of All of Its Dead Parts

The method presented in the previous section makes it possible to find dead
parts of a query and remove them. As we will discuss in this section, removing
dead parts may cause other subqueries to become dead. That is, in some cases
some parts of a query may turn out to be dead after other dead parts of that
query have been removed. Let’s start with an example. Suppose that we have a
view, which returns lectures along with professors who give them, and faculties
in which those professors work:
view LectProfFaculty
begin

return Lecture �� given by.Professor �� works in.Faculty
end;
If we want to use this view to get the subjects of all lectures, we can ask the
query
LectProfFaculty.subject
After macro-substitution it has the form:
(Lecture �� given by.Professor �� works in.Faculty).subject

The only dead part is works in.Faculty (it’s the biggest dead part). The
subquery given by.Professor is not used by the subquery subject, but is not
dead since it is used by the dead subquery; thus it cannot be eliminated. After
removing the dead part the query has the form
(Lecture �� given by.Professor).subject

Note that now the part given by.Professor is dead. The reason is that the
subquery, which used its result, has been removed. Therefore the method should
be performed in a loop: in one iteration one modified static analysis of the
current form of a query would be rendered, during which all dead parts would
be detected and removed; the loop would end when no dead part were found.



Query Optimization through Removing Dead Subqueries 39

6 Other Cases

So far we have considered queries for which a dead subquery was a part of a join
subquery and the result of that dead subquery was used to constitute (a part
of) the top environment on ES. However, in a general case a dead subquery does
not have to satisfy those conditions. Let’s analyze an example. Suppose we have
the view
view NamesOfProfFaculty
begin

return Professor.(works in.(name as n, Faculty.fname as f ))
end;
which for each professor returns his/her name and the name of the faculty he/she
works in (those subresults are named n and f, respectively). If we want to get
professors’ names via this view, we can ask the following query:
NamesOfProfFaculty.n

After macro-substitution it has the form:
(Professor.(works in.(name as n, Faculty.fname as f ))).n (ii)
The subquery Faculty.fname as f is dead just like the dead subqueries considered
so far (it is the only dead part of query (ii)); we remove it:
(Professor.(works in.(name as n))).n (iii)
However, a subquery that was not dead in (ii) turns out to be dead in (iii): the
subquery works in died, because the only subquery that had used its result (i.e.,
Faculty) has been removed as a component of the dead subquery.

Note that the dead subquery neither forms a join subquery or its result is
used to build the top environment on ES, when the final dot operator (which
is the last operator whose right subquery could use the result of works in) is
being evaluated. Such cases require further research so that our method could
transform (iii) to
(Professor.(name as n)).n

A final remark: In some cases where can cause a subquery to be dead. An
example is the case when the left subquery of where is a union of queries:
(Q1 union Q2 ) where Q3
It may turn out that the final result of the whole query does not contain the
result of Q1 (or Q2 ) which makes the subquery dead. This also needs further
research.

7 Conclusions

In the paper we have discussed in detail a special query optimization technique
based on detecting and removing dead parts of queries through rewriting a query
into a semantically equivalent form without dead parts. The method is based
on static analysis of a given query in order to gather all the information that
we need to detect dead subqueries. The only internal form of a query being
optimized is a syntax tree.



40 J. P�lodzień and K. Subieta

In our research we have used the formal stack-based model, which allows us to
describe precisely the semantics of query languages for a general object-oriented
database model. In this setting we have described our approach to views and we
have explained how we make use of the powerful technique of query modification
(macro-substitution).

As we have pointed there are special cases of dead subqueries that are not
covered by our method. They require further research.

References

1. Fernandez, M., Simeon, J., Wadler, P.: XML Query Languages: Experiences and
Exemplars. www-db.research.bell-labs.com/user/simeon/xquery.html. (2000).

2. Cattel, R., Barry, D.: Object Data Standard 3.0. Morgan Kaufmann. (2000).
3. Ott, N., Horlander, K.: Removing Redundant Join Operations in Queries Involving

Views. Information Systems 10(3). (1985) 279–288.
4. P�lodzień, J.: Optimization Methods in Object Query Languages. Ph.D. Thesis.

Institute of Computer Science, Polish Academy of Sciences. (2000).
5. P�lodzień, J., Kraken, A.: Object Query Optimization through Detecting Indepen-

dent Subqueries. Information Systems 25(8). (2000) 467–490.
6. P�lodzień, J., Subieta, K.: Optimization of Object-Oriented Queries by Factoring

Out Independent Subqueries. Institute of Computer Science, Polish Academy of
Sciences. Report 889. (1999).

7. P�lodzień, J., Subieta, K.: Static Analysis of Queries as a Tool for Static Optimiza-
tion. Proc. of IDEAS. to appear (2001).

8. Stonebraker, M.: Implementation of Integrity Constraints and Views by Query
Modification. Proc. of SIGMOD. (1975) 65–78.

9. Subieta, K.: Mapping Heterogeneous Ontologies through Object Views. Proc. of
3rd Workshop on Engineering Federated Information Systems. (2000) 1–10.

10. Subieta, K., Beeri, C., Matthes, F., Schmidt, J.: A Stack-Based Approach to Query
Languages. Proc. of 2nd Intl. East-West Database Workshop. (1995) 159–180.

11. Subieta, K., Kambayashi, Y., Leszczy�lowski, J.: Procedures in Object-Oriented
Query Languages. Proc. of VLDB. (1995) 182–193.

12. Subieta, K., P�lodzień, J.: Object Views and Query Modification. In: Barzdins,
J., Caplinskas, A. (eds.): Databases and Information Systems. Kluwer Academic
Publishers. (2001) 3–14.



The Impact of Buffering on Closest Pairs
Queries Using R-Trees

Antonio Corral1, Michael Vassilakopoulos2, and Yannis Manolopoulos3�

1 Department of Languages and Computation
University of Almeria, 04120 Almeria, Spain

acorral@ual.es
2 Lab of Data Engineering, Department of Informatics

Aristotle University, 54006 Thessaloniki, Greece
mvass@computer.org

3 Department of Computer Science
University of Cyprus, 1678 Nicosia, Cyprus

manolopo@ucy.ac.cy

Abstract. In this paper, the most appropriate buffer structure, page
replacement policy and buffering scheme for closest pairs queries, where
both spatial datasets are stored in R-trees, are investigated. Three buffer
structures (i.e. single, hybrid and by levels) over two buffering schemes
(i.e. local to each R-tree, and global to the query) using several page
replacement algorithms (e.g. FIFO, LRU, 2Q, etc.) are studied. In order
to answer K closest pair queries (K-CPQs, with K ≥ 1) we employ re-
cursive and non-recursive (iterative) branch-and-bound algorithms. The
outcome of this study is the derivation of the outperforming configuration
(in terms of buffer structure, page replacement algorithm and buffering
scheme) for CPQs. In all cases, the savings in disk accesses is larger for
a recursive algorithm than for a non-recursive one, in the presence of
buffer space. Also, the global buffering scheme is more appropriate for
small or medium buffer sizes for recursive algorithms, whereas the lo-
cal scheme is the best choice for large buffers. If we use non-recursive
algorithms, the global buffering scheme is the best choice in all cases.
Moreover, LRU is the most appropriate page replacement algorithm for
small or medium buffer sizes for both types of branch-and-bound algo-
rithms. FIFO and LRU are the best choices for recursive algorithms and
2Q for the non-recursive ones, when the buffer is large enough.

1 Introduction

The use of buffers is very important in DBMSs, since it can improve the perfor-
mance substantially (reading data from the disk is significantly more expensive
than reading from a main memory buffer). There exist two basic research di-
rections that aim at reducing the disk I/O activity and enhancing the system

� On sabbatical leave from the Department of Informatics, Aristotle University, 54006
Thessaloniki, Greece. manolopo@csd.auth.gr

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 41–54, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



42 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

throughput during query processing using buffers. The first one focuses on the
availability of buffer pages at runtime by adapting memory management tech-
niques for buffer managers used in operating systems to database systems [1,9,
13,15]. The second one focuses on query access patterns, where the query opti-
mizer dictates the query execution plan to the buffer manager, so that the latter
can allocate and manage its buffer accordingly [4,6,20].

The spatial selections, nearest neighbor searches and joins are considered
the most important queries in spatial databases that are based on R-trees.
R-trees [10] are multi-dimensional, height balanced tree structures for secondary
storage, that handle objects by means of their Minimum Bounding Rectangles
(MBRs). In [5] a new kind of spatial query, called K closest pairs query (K-CPQ),
is presented. It combines join and nearest neighbor queries for discovering the
K pairs (K ≥ 1) of spatial objects from two datasets that have the K smallest
distances between them (1-CPQ is treated as special case). Like a join query,
all pairs of objects are candidates for the result. Like a nearest neighbor query,
proximity metrics are the basis for pruning strategies and the final ordering.

The main objective of this work is to find the most appropriate buffer struc-
ture, page replacement policy and buffering scheme for CPQs, where both spatial
datasets are indexed with R-trees. Based on experimental results, we draw con-
clusions about the importance of using an appropriate buffer management for the
I/O performance of this kind of query. We present a comparative study, where
several parameters (such as the buffer structure, page replacement algorithms,
buffering schemes, buffer size in pages, number of pairs in the result K and the
nature of indexed datasets) and corresponding values are considered.

The rest of this paper is organized as follows. In Sect- 2, we review the liter-
ature (CPQs using R-trees and buffering) and motivate the research topic under
consideration. In Sect. 3, a brief description of the spatial access method (i.e.
R-tree) and the branch-and-bound algorithms (i.e. recursive and non-recursive)
for satisfying CPQs are presented. In Sect. 4, in order to study the effect of
buffering in the performance of this kind of query, we examine combinations
of buffer structures, page replacement algorithms and buffering schemes. More-
over, in Sect. 5, an extensive comparative performance study of CPQ algorithms
over these alternative combinations is presented. Finally, in the last section,
the conclusions on the contribution of this paper and future research plans are
summarized.

2 Related Work and Motivation

In DBMSs, the buffer manager is responsible for operations in the buffer pool,
including buffer space assignment to queries, replacement decisions and buffer
reads and writes in the event of page faults. When buffer space is available, the
manager decides about the number of pages that are allocated to an activated
query. This decision may depend on the availability of pages at runtime (page
replacement algorithms), or the access pattern of queries (nature of the query).
A number of studies focus on adapting memory management techniques used



The Impact of Buffering on Closest Pairs Queries Using R-Trees 43

in operating systems to database systems, such as FIFO, LRU, LFU, Gclock,
etc. [1,9,13,15]. Other research efforts aim at determining the buffer requirements
of queries based on their access patterns (the nature of the query) without con-
sidering the availability of buffer pages at runtime [4,6,20].

Since this paper is related to the research directions based on the nature of the
query, we focus in the most representative papers about the buffer management
on indices. In [18], an LRU buffer structure for indices was presented (OLRU),
where the addressing space is logically partitioned into L independent regions,
each managed by a local LRU chain. In [6] an extensible and dynamic priority-
based hint mechanism was proposed to design an optimal replacement strategy
by exploiting the predictable access pattern of indexing methods. An application
on their hint mechanism was to design a hybrid replacement strategy, combining
the LRU and MRU page replacement policies. There are several studies on spatial
queries involving more than one R-tree, and most of them examine the use of
buffering to reduce the I/O activity [3,5,7,11,12,17].

All the previous papers involved more than one R-tree for the query and used
a buffer pool with LRU or FIFO replacement policy, but they did not justify the
use of these policies. In other words, they did not examine several alternatives for
the buffer structure, or for the page replacement strategies in order to reduce the
disk activity. In this paper, our objective is to find the most appropriate buffer
pool structure (i.e. single, hybrid and by levels) over two buffering schemes (i.e.
local and global) and the best page replacement policy (e.g. FIFO, LRU, Gclock,
etc.) for CPQs, where both spatial datasets are indexed by R-trees.

3 R-Trees and Algorithms for Closest Pairs Queries

3.1 R-Trees

R-trees [10] are hierarchical, height balanced data structures based on B+-trees,
used for the dynamic organization of k-dimensional geometric objects that are
represented by k-dimensional MBRs. R-trees obey the following rules. Leaves
reside on the same level and contain pairs of the form (R, O), where R is the
MBR containing the object determined by the identifier O, spatially. Internal
nodes contain pairs of the form (R, P), where P is a pointer to a child of the
node and R is the MBR containing (spatially) the rectangles stored in this child.
Also, internal nodes correspond to MBRs containing (spatially) the MBR of their
children. An R-tree of class (m, M) has the characteristic that every node, except
possibly for the root, contains between m and M pairs, where m ≤ �M/2�. If the
root is not a leaf, it contains at least two pairs. Figure 1 depicts some rectangles
on the right and the corresponding R-tree on the left. Dotted lines denote the
bounding rectangles of the subtrees that are rooted in inner nodes.

Many R-tree variants have appeared in the literature. One of the most popu-
lar variations is the R∗-tree [2], which follows a sophisticated node split technique
and is considered to be the most efficient variant of the R-tree family. In this
paper, we have chosen R∗-trees to perform our experimental study, although in
the sequel, the terms R-tree and R∗-tree will be used interchangeably.



44 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

C

A

B

N

M
L

H

D
F

E G
K

J

I
D E F G H I J K L M N

A B C

�
�
��

�
���

�
�
���

Fig. 1. An example of an R-tree

3.2 Algorithms for Closest Pairs Queries

A new spatial query was presented in [5], called K closest pairs query (K-CPQ).
It combines join and nearest neighbor queries for discovering the K pairs (K ≥ 1)
of spatial objects from two datasets that have the K smallest distances between
them. These queries are defines as follows.

1-CPQ. Assume two object datasets P and Q (where P 	= ∅, Q 	= ∅), stored
in two R-trees, RP and RQ, respectively. Find the pair of objects p, p ∈ P × Q,
such that: dist(p) ≤ dist(p′),∀p′ ∈ (P × Q − {p}), where dist is a Minkowski
distance of the pairs of P × Q.

K-CPQ. Assume two object datasets P and Q (where P 	= ∅, Q 	= ∅), stored
in two R-trees, RP and RQ, respectively. Find the K ordered pairs of objects
p1, p2, . . . , pK , pi ∈ P × Q, such that: dist(p1) ≤ dist(p2) ≤ . . . ≤ dist(pK) ≤
dist(p′),∀p′ ∈ (P × Q − {p1, p2, . . . , pK}).

Metrics (MINIMINDIST, MINMAXDIST and MAXMAXDIST) and prop-
erties between two MBRs in the k-dimensional Euclidean space were proposed
for the 1-CPQ and K-CPQ in [5] as bounds for the branch-and-bound (recursive
and non-recursive) algorithms. The recursive branch-and-bound algorithm (with
a synchronous traversal, following a depth-first search strategy) for processing
the 1-CPQ between two sets of points stored in two R-trees with the same height
can be described by the following steps:

CPQ1. Start from the roots of the two R-trees and set the minimum distance
found so far, T , to ∞.

CPQ2. If you access a pair of internal nodes, then calculate the minimum
of MINMAXDIST for all possible pairs of MBRs. If this minimum is smaller
than T , then update T . Calculate MINMINDIST for each possible pair of MBRs.
Propagate downwards recursively only for those pairs having MINMINDIST≤T .

CPQ3. If you access two leaves, then calculate the distance of each possible
pair of points. If this distance is smaller than T , then update T .

The non-recursive branch-and-bound algorithm (with a synchronous traver-
sal, following a best-first search strategy using a minimum heap) for processing
the 1-CPQ between two sets of points stored in two R-trees with the same height
can be described by the following steps:



The Impact of Buffering on Closest Pairs Queries Using R-Trees 45

CPQ1. Start from the roots of the two R-trees, set T to ∞ and initialize
the minimum heap.

CPQ2. If you access a pair of internal nodes, then calculate the minimum of
MINMAXDIST for all possible pairs of MBRs. If this minimum is smaller than
T , then update T . Calculate MINMINDIST for each possible pair of MBRs.
Insert into the minimum heap those pairs having MINMINDIST≤T .

CPQ3. If you access two leaves, then calculate the distance of each possible
pair of points. If this distance is smaller that T , then update T .

CPQ4. If the minimum heap is empty, then stop.
CPQ5. Get the pair on top of the minimum heap. If this pair has MINMIN-

DIST>T , then stop. Else, repeat the algorithm from CPQ2 for this pair.

The pseudo-code of the recursive and non-recursive algorithms can be found
in the technical report [8]. Moreover, in order to process the K-CPQ, an extra
structure that holds the K closest pairs is necessary. More details can be found
in [5].

4 Buffer Management

DBMSs use indices to speed up query processing (e.g. various spatial databases
use R-trees). Indices may partly reside in main memory buffers. This reduces re-
sponse times. The buffering effect should be studied, since even a small number
of buffer pages can substantially improve the global database performance. Our
objective is to find the best structure of the buffer pool, the best page replace-
ment algorithm and the best buffering scheme for the buffer manager in order to
reduce the number of disk accesses for K-CPQs. We propose three structures of
the buffer pool (i.e. single, hybrid and by levels) managed by a variety of page
replacement algorithms (e.g. FIFO, LRU, etc.).

The buffer pool structure will be organized adopting two buffering schemes
as depicted in Fig. 2. In the first scheme, the buffer pool is split in two parts,
each one allocated locally to an R-tree (left part of Fig. 2). We call it, thus, a
Local buffering scheme. In the second one, the buffer pool is allocated globally
to the query (right part of Fig. 2), giving rise to a Global buffering scheme.

In [9] a systematic description of replacement algorithms was presented for a
single buffer structure. The FIFO (First-In First-Out) algorithm replaces the old-
est page, even if its reference frequency gives the priority to the youngest page.
The LFU schema (Least Frequently Used) replaces the page with the lowest
reference frequency. Gclock consists of a circular decrementing of the reference
counters until 0 is reached. When a buffer fault occurs, the first page having a
counter equal to 0 is replaced. The LRU (Least Recently Used) algorithm gives
the priority to the most recently used page, replacing the page that was the
least recently used. MRU (Most Recently Used) is the opposite of LRU and re-
places the page that was the most recently used. The LRU/2 is a particular case
of LRU/K, proposed in [15] for K = 2, replacing the page whose penultimate
(second-to-last) access is the least recent among all penultimate accesses. LRD



46 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

(Least Reference Density) is not a page replacement algorithm based on page
ages, but on its reference density (reference probability) from the first time that a
page was accessed. The page replacement algorithm LRD rejects from the buffer
the page with the minimum reference density. Finally, in [16] a page replace-
ment algorithm for spatial databases, called LRD-Manhattan, was proposed as
a variation of LRD.

K-CPQs

I/O Module

�	 �	

Local buffer Local buffer

�	 �	

�	 �	







�
��






�
��

RP RQ

I/O Module

�	 �	

�	






�
��







�
��

RP RQ

K-CPQs

�	

Global buffer

Fig. 2. Local and Global buffering schemes

The most representative methods for the hybrid buffer structure are the
techniques called 2Q and FIFO LRU. The 2Q algorithm divides the buffer pool in
two areas: the hot area managed as an LRU queue and the cold area maintained
as a FIFO queue [13]. On the first reference of a page, 2Q places it in the cold
area (FIFO). If the page is re-referenced while in the cold area, then it is moved
to the hot area (LRU). Evidently, if a page is not re-referenced while in the cold
area, it is rejected from the buffer. In order to solve the “correlated references”
problem, 2Q divides the cold area in two parts, one for pages and another for
page identifiers. The FIFO LRU technique works in the same way as 2Q, but the
hot area is implemented as a FIFO replacement algorithm and the cold area is
managed with an LRU policy [1].

Here, we present a buffer structure linked to each R-tree based on its height,
h, for solving K-CPQs. This means that the buffer pool is split in h independent
areas. For each R-tree level we allocate a number of pages according to its min-
imum fan-out factor m and its height, with the exception of the root, for which
we allocate only one page. We create this buffer structure in a bottom-up way,
trying to set a distribution of pages per level as fair as possible (root level=level
h − 1 : m0, level h − 2 : m1, level h − 3 : m2, . . ., level 1 : mh−2, leaf level=level
0 : mh−1). In the case of K-CPQs, pages at lower levels are very important for
the branch-and-bound algorithms. Besides, we manage these h independent ar-
eas using a specific page replacement algorithm, for example LRU (LRU L=LRU
by levels), or FIFO (FIFO L=FIFO by levels).



The Impact of Buffering on Closest Pairs Queries Using R-Trees 47

5 Experimentation

This section summarizes the results of an extensive experimentation that aims
at measuring and evaluating the behavior of the recursive and non-recursive
branch-and-bound algorithms for K-CPQs using different structures, schemes,
policies and buffer sizes. We ignore the effect of path-buffer [5], since it offers
more advantages to the recursive algorithms, regardless of the page replacement
policy.

For our experiments, we have built several R∗-trees [2] using the following
datasets: (a) a real dataset from the Sequoia project [19] consisting of 62.536
points that represent specific country sites of California (Real), (b) a point
dataset produced from the real one by moving randomly every point (Real′) and
(c) two datasets of cardinality 62.536 points, which completely overlap and follow
uniform and skewed distributions [5]. All experiments have run on a Linux work-
station with 128 Mb of main memory and several Gb of secondary storage, mak-
ing use of GNU C++ compiler. The page size was 1 Kb, resulting to a maximum
R∗-tree node capacity M = 21 (minimum capacity was set to m = M/3 = 7, a
reasonable choice according to [2]). The quantity counted in all experiments was
the number of disk accesses required to perform the K-CPQs.

5.1 K-CPQ Algorithms Using a Local Buffering Scheme

We now proceed to the performance comparison of the recursive and non-recur-
sive branch-and-bound algorithms for K-CPQs using a Local buffering scheme
in order to investigate the best page replacement policy and buffer structure.
We used a buffer pool, B, with varying size from 0 to 512 pages, dedicating
different portions of B to each R∗-tree. The datasets joined were Real/Real′ and
Uniform/Skewed. However, in the sequel we focus on Real/Real′ data sets, since
both cases gave very similar trends.

First of all, for the hybrid structure in the Local or Global buffering scheme,
we have performed several experiments with different B values (B/2 for each
R∗-tree) using recursive and non-recursive algorithms to derive the best page
distribution for the hot and cold regions in the buffer. If BP is the number of
pages in the local buffer of the R∗-tree RP , the best configuration was <Hot,
Cold> = < BP /2, BP /2 >. Moreover, for the Local buffering scheme, we have
assigned a varying number of pages to each R∗-tree, and the best distribution
of the buffer was to assign more pages to the largest R∗-tree, whatever the type
(recursive, or non-recursive) of algorithm used. Since in our experimentation
we have point datasets with identical cardinalities, (B/2, B/2) was the best
configuration [8].

We have run experiments using different page replacement policies over the
three buffer pool structures. The best policies for the recursive algorithms were
FIFO and LRU in case of small buffers (e.g. B ≤ 64), but in case of large buffers
(e.g. B ≥ 128) LRU L was slightly better than FIFO and LRU. FIFO and LRU
were better than LFU, Gclock, MRU, LRU/2 and LRD, because recursion favors
the youngest and most recently used pages in the backtracking phase and this



48 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

behavior is slightly improved in case of large buffers organized by levels (FIFO L
and LRU L). On the other hand, for the non-recursive algorithms and small
buffers (e.g. B ≤ 64), FIFO and LRU were again the best policies, whereas for
large buffers (e.g. B ≥ 128) 2Q was slightly better than FIFO and LRU. In
this case, we did not use recursion and the organization of the buffer pool in two
regions (i.e. hot and cold) provided a good performance, when the search strategy
was best-first implemented through a heap of minimums and the buffer was large
enough. For instance, for the recursive 1-CPQ, using a single buffer structure,
MRU was 35% worse with respect to the LRU. Under these conditions, Gclock
was 4% worse with respect to LRU, LFU 35% worse than FIFO, LRU/2 20%
worse than LRU, and LRD 32% worse than FIFO. These behaviors are depicted
in Fig. 3, where different page replacement policies are compared, using the
recursive algorithm for 1-CPQ in a single buffer structure. Besides, if we include
a large buffer (e.g. B = 512) with the single structure and the LRU policy, the
savings in I/O operations were 73% for the recursive algorithm and 68% for the
non-recursive one with respect to the absence of buffer space (B = 0). For the
non-recursive algorithm the results were very similar.

10000

16000

22000

28000

34000

40000

0 8 16 32 64 128 256 512

Di
sk

 A
cc

es
se

s

Buffer Size (in pages)

FIFO
LFU

Gclock
LRD

10000

16000

22000

28000

34000

40000

0 8 16 32 64 128 256 512

Di
sk

 A
cc

es
se

s

Buffer Size (in pages)

LRU
MRU

Gclock
LRU/2

Fig. 3. The performance of the 1-CPQ recursive algorithm for various page replacement
policies and a single buffer structure, as a function of the buffer size

For the recursive and non-recursive algorithms, in Fig. 4 we illustrate the
performance of the 1-CPQ recursive (left) and non-recursive (right) algorithms
for various page replacement policies, as a function of the buffer size. It can be
seen that the two charts follow the same trend. When the buffer size is small
(e.g. B ≤ 64), the single structure with LRU policy is the best (with 6% and
5% savings for LRU in comparison with 2Q, for recursive and non-recursive
algorithms, respectively), the second is the hybrid and the third one is by levels.
However, in case of large buffers (e.g. B ≥ 128) the difference is almost negligible
for all page replacement policies, although LRU L and 2Q are slightly better that
the other for the recursive and non-recursive algorithms, respectively.

The results of the recursive K-CPQ algorithm for a given buffer size (e.g.
B = 512) showed that the best behavior was for LRU L with a 0.5% improvement
over LRU (for all K values), whereas the worst results appeared in the case of
the hybrid structure (2Q and FIFO LRU). For the non-recursive algorithm with
the same number of buffer pages (B = 512), the best behavior was for 2Q with a



The Impact of Buffering on Closest Pairs Queries Using R-Trees 49

10000

16000

22000

28000

34000

40000

0 8 16 32 64 128 256 512

Di
sk

 A
cc

es
se

s

Buffer Size (in pages)

FIFO
LRU

LRU_L
FIFO_L

2Q
FIFO_LRU

10000

16000

22000

28000

34000

40000

0 8 16 32 64 128 256 512

Di
sk

 A
cc

es
se

s

Buffer Size (in pages)

FIFO
LRU

LRU_L
FIFO_L

2Q
FIFO_LRU

Fig. 4. The performance of the of 1-CPQ recursive (left) and non-recursive (right)
algorithms for various page replacement policies, as a function of the buffer size

0.6% improvement over LRU (for all K values), whereas the worst results were
for FIFO LRU [8].

In the case of 1-CPQ, the recursive algorithm presents 10% excess of I/O
activity in comparison to the non-recursive one with the same page replacement
policy (LRU), as can be noticed by the gap between the two lines in the left part
in the Fig. 5. The gap for K-CPQ is bigger when the K value is incremented; it
is 25% bigger for K ≤ 10000, but it reaches 45% when K = 100000 (see the right
part of Fig. 5). Besides, by increasing K values (1..100000), the performance of
the recursive algorithm is not significantly affected; with a buffer of 512 pages
and the best page replacement algorithm there is an extra cost of 2%. On the
other hand, this extra cost is about 39% for the non-recursive algorithm using
the same buffer characteristics. If we do not have any buffer space (B = 0),
then increasing K implies an additional cost of 33% for the recursive algorithm
and 16% for the non-recursive one. Moreover, the recursive variant demonstrates
savings in the range 73%-82%, when K increases (1..100000) and a buffer of 512
pages is used, in comparison to the no buffer case (B = 0). The non-recursive
algorithm under the same buffer setup results in savings from 68% to 57%.

10000

16000

22000

28000

34000

40000

0 8 16 32 64 128 256 512

Di
sk

 A
cc

es
se

s

Buffer Size (in pages)

REC-LRU
NREC-LRU

10000

12000

14000

16000

18000

20000

1 10 100 1000 10000 100000

Di
sk

 A
cc

es
se

s

Number of Pairs

REC-LRU_L
NREC-2Q

Fig. 5. The performance of the 1-CPQ (left) and the K-CPQ (right) recursive (REC)
and non-recursive (NREC) algorithms using the best page replacement policies and
B = 512, as a function of the buffer size

In Fig. 6, the percentage of I/O cost savings (induced by the use of buffer size
B > 0 in contrast to not using any buffer) of the K-CPQ recursive algorithm
with LRU L policy (left) and non-recursive algorithm with 2Q policy (right) is



50 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

depicted. For the recursive algorithm, the percentage of savings grows as buffer
sizes increase, for all K values, although it is bigger for K = 100000. The be-
havior of non-recursive algorithm is slightly different. When the buffer becomes
larger, the percentage of savings also increases, but when we fix the buffer size,
the increase of K causes a decrease in the percentage of savings. From all these
results, we notice that the influence of buffering for a Local scheme is more
important for the recursive algorithm than for the non-recursive one.

8163264128256512
1

100000

20%

34%

48%

62%

76%

90%

P
er

ce
nt

 o
f S

av
in

g

Buffering Size (in pages)

# of Pairs

20%-34% 34%-48% 48%-62% 62%-76% 76%-90%

8163264128256512
1

100000

25%

34%

43%

52%

61%

70%

P
er

ce
nt

 o
f S

av
in

g

Buffering Size (in pages)

# of Pairs

25%-34% 34%-43% 43%-52% 52%-61% 61%-70%

Fig. 6. The I/O cost savings of the K-CPQ recursive algorithm with LRU L policy
(left) and non-recursive algorithm with 2Q policy (right), as a function of B and the
cardinalities of the data sets

5.2 K-CPQ Algorithms Using a Global Buffering Scheme

For the Global buffering scheme, we have used the same parameters as for the
Local one in order to investigate the best page replacement policy and buffer
structure. In particular we used: (a) several replacement algorithms (FIFO, LRU,
LRU L, FIFO L, 2Q and FIFO LRU) for the three buffer structures, (b) the same
number of pages for the buffer (B varying from 0 to 512 pages), and (c) the
recursive and non-recursive algorithms for K-CPQ with K varying from 1 to
100000.

We have performed experiments with 1-CPQ using several replacement al-
gorithms in the Global buffering scheme. When the buffer size was small or
medium (e.g. B ≤ 128), the single structure with LRU policy was the best (with
3% savings with respect to 2Q, for recursive and non-recursive algorithms), the
second was the hybrid and the third one was by levels. Again, when the buffer
was large (e.g. B ≥ 256) the difference was almost negligible for all page replace-
ment policies, although FIFO and 2Q were slightly better than the other ones
for the recursive and non-recursive algorithms, respectively [8].

In the left part of Fig. 7, we depict the performance of the recursive K-CPQ
algorithm for a given buffer size (e.g. B = 512). The best behavior is for FIFO
with savings of 0.6% in relation to the LRU (for all K values), and the worst
results are again for the hybrid structure (2Q and FIFO LRU). On the other



The Impact of Buffering on Closest Pairs Queries Using R-Trees 51

hand, the results of the non-recursive K-CPQ algorithm are illustrated in the
right part of Fig. 7 for the same buffer size (B = 512). The best behavior arises
for 2Q with savings of 0.6% in relation to LRU (for all K values), and the worst
results are for FIFO LRU.

For 1-CPQ, the buffering increased the performance of the recursive algo-
rithm by 9% in comparison to the non-recursive one with the same page re-
placement policy (LRU). For K-CPQ, when the K value was incremented, this
improvement was 26% approximately for K ≤ 10000 and 47% for K = 100000.
Besides, for increasing K values, the I/O cost of the recursive algorithm was not
significantly affected, when we had a buffer of 512 pages and the best page re-
placement algorithm had only an extra cost of 2%. On the other hand, this extra
cost was about 39% for the non-recursive algorithm using the same buffer char-
acteristics. Moreover, the recursive variants demonstrated savings in the range
73%-81% as K increased, between the case of a 512 pages buffer and the case no
buffer at all (B = 0). The non-recursive algorithm, under the same buffer setup,
resulted in 68%-57% savings. In general, these results were very similar to the
Local buffering scheme ones [8].

10000

10400

10800

11200

11600

12000

1 10 100 1000 10000 100000

Di
sk

 A
cc

es
se

s

Number of Pairs

FIFO
LRU

LRU_L
FIFO_L

2Q
FIFO_LRU

12000

13600

15200

16800

18400

20000

1 10 100 1000 10000 100000

Di
sk

 A
cc

es
se

s

Number of Pairs

FIFO
LRU

LRU_L
FIFO_L

2Q
FIFO_LRU

Fig. 7. The performance of the K-CPQ algorithm for different page replacement poli-
cies as a function of the buffer size for recursive (left) and non-recursive (right) algo-
rithms and B = 512 pages

In Fig. 8, we see the performance of K-CPQ recursive and non-recursive
algorithms as a function of buffer size (B ≥ 0) with LRU policy. For the recursive
algorithm, when B ≥ 32, the savings in terms of disk accesses are large and
almost the same for all K values. However, the savings are considerably less when
B ≤ 16, whereas for K = 100000 and B = 0 we can notice a characteristic peak.
For the non-recursive algorithm, the savings trend is similar to the recursive
one, but for high K values these savings become considerably less than the
recursive one. For instance, if we have available enough buffer space, the recursive
algorithm is the best alternative, because it provides an average I/O savings of
20% in respect to the non-recursive one for K-CPQ using LRU. For all these
results, we notice that the influence of buffering for a Global scheme is more
important for the recursive algorithm than for the non-recursive one in the K-
CPQs, when we have enough buffer space. It is the same conclusion to that for
the Local buffering scheme.



52 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

0 8 16 32 64 128 256 512
1

100000

10000

20000

30000

40000

50000

60000
D

is
k 

A
cc

es
se

s

Buffering Size (in pages)

# of Pairs

10000-20000 20000-30000 30000-40000 40000-50000 50000-60000

0 8 16 32 64 128 256 512
1

100000

10000

18000

26000

34000

42000

50000

D
is

k 
A

cc
es

se
s

Buffering Size (in pages)

# of Pairs

10000-18000 18000-26000 26000-34000 34000-42000 42000-50000

Fig. 8. The performance of K-CPQ recursive (left) and non recursive (right) algorithms
with LRU policy, as a function of the buffer size and the cardinality of the data sets

5.3 Comparison of the Buffering Schemes for K-CPQ

Table 1 contains the results of an exhaustive comparison of the Local and Global
buffering schemes, using the best buffer structure and page replacement algo-
rithms for each of them. These results concern the performance of K-CPQs
(K ≥ 1) using the recursive (REC) and non-recursive (NREC) algorithms.

Table 1. Comparison of the Local and Global buffering schemes

Buffer Size 8 16 32 64 128 256 512
REC G (LRU) G (LRU) L (LRU) G (LRU) G (LRU) G (FIFO) L (LRU L)
NREC G (LRU) G (LRU) G (LRU) G (LRU) G (2Q) G (2Q) G (2Q)

From this table (where L and G stand for Local and Global, respectively), we
deduce that the Global buffering scheme is the best alternative in most cases,
except for B = 32 and B = 512 for the recursive algorithm where the Local
scheme prevails. The difference between the Global and Local schemes is around
1%-2% in terms of disk accesses for all cases. Since the difference is small, we
suggest to use the Global buffering scheme, because, in this case, the buffer
manager may: (a) include and handle more than two R-trees in the same buffer
area, (b) give priority to a specific R-tree, (c) manage and assign dynamically
more pages to one R-tree and (d) introduce global optimization techniques.

Besides, LRU is the most appropriate page replacement algorithm with a sin-
gle buffer structure when the buffer size is small or medium. On the other hand,
when the buffer is large the best alternatives are FIFO (single structure) and
LRU L (structure by level) for the recursive algorithm and 2Q (hybrid structure)
for the non-recursive one. Since the difference between LRU and the other win-
ner page replacement algorithms (FIFO, LRU L and 2Q) is in the range 1%-2%,
we suggest to use LRU as the policy with the best overall stable performance.



The Impact of Buffering on Closest Pairs Queries Using R-Trees 53

6 Conclusions and Future Work

Efficient processing of closest pairs queries (K-CPQs with K ≥ 1) is of great
importance in a wide area of applications like spatial databases, GIS, image
databases, etc. Buffering is very important in DBMSs, because it improves the
performance considerably (since reading from disk is orders of magnitude more
expensive than reading from a buffer). In this paper we have examined the most
important factors that affect the performance in the presence of a buffer. These
are: the buffer structure, the page replacement algorithm, and the buffering
scheme. From the experimentation we deduce the following conclusions:

– The I/O savings for the recursive algorithm are larger than that of the non-
recursive one for K-CPQ when we have enough buffer space. The reason
is that the use of recursion in a depth-first way is affected by the buffer-
ing scheme more than the case of a best-first search strategy implemented
through a heap of minimums.

– With a fixed buffer size, increasing the number K of pairs in a CPQ for
the recursive algorithm results in a negligible extra cost with respect to the
additional cost for the non-recursive one.

– The Global buffering scheme is more appropriate when the buffer size is
small or medium for the recursive algorithm, while the Local scheme is the
best choice for large buffers. On the other hand, if we use the non-recursive
algorithm, the Global buffering scheme is the best alternative for all cases.

– LRU is the most appropriate page replacement algorithm with a single buffer
structure when the buffer size is small or medium, whatever the type (recur-
sive, or non-recursive) of algorithm for K-CPQs. On the other hand, when
the buffer is large, then the best alternatives are FIFO (single structure)
and LRU L (structure by levels) for the recursive algorithm and 2Q (hybrid
structure) for the non-recursive one.

Future research may include:

– Study of alternative choices for the buffer structure, page replacement algo-
rithm and buffering scheme in the Self-CPQ and Semi-CPQ [5], which are
extensions of 1-CPQ and K-CPQ.

– Consideration of other spatial data structures and multi-dimensional data.
– Development of a cost model, taking into account the effect of buffering to

analyze the number of disk accesses required for K-CPQs for R∗-trees (along
the same lines as in [14], where a cost model for range queries in R-trees has
been developed).

References

1. W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza and N. MacNaughton: “The Or-
acle Universal Server Buffer”, Proc. 23rd VLDB Conf., pp.590-594, Athens, Greece,
1997.



54 A. Corral, M. Vassilakopoulos, and Y. Manolopoulos

2. N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger: “The R∗-tree: and Efficient
and Robust Access Method for Points and Rectangles”, Proc. 1990 ACM SIGMOD
Conf., pp.322-331, Atlantic City, NJ, 1990.

3. T. Brinkhoff, H.P. Kriegel and B. Seeger: “Efficient Processing of Spatial Joins
Using R-Trees”. Proc. 1993 ACM SIGMOD Conf., pp.237-246, Washington, DC,
1993.

4. H.T. Chou and D.J. DeWitt: “An Evaluation of Buffer Management Strategies for
Relational Database Systems”, Proc. 11th VLDB Conf., pp.127-141, Stockholm,
Sweden, 1985.

5. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Closest
Pair Queries in Spatial Databases”, Proc. 2000 ACM SIGMOD Conf., pp.189-200,
Dallas, TX, 2000.

6. C.Y. Chan, B.C. Ooi and H. Lu: “Extensible Buffer Management of Indexes”, Proc.
18th VLDB Conf., pp.444-454, Vancouver, Canada, 1992.

7. A. Corral, M. Vassilakopoulos and Y. Manolopoulos: “Algorithms for Joining R-
Trees and Linear Region Quadtrees”, Proc. 6th SSD Conf., pp.251-269, Hong Kong,
China, 1999.

8. A. Corral, M. Vassilakopoulos and Y. Manolopoulos: “The Impact of Buffering
on Closest Pairs Queries using R-trees”, Technical Report, Dept. of Informatics,
Aristotle University of Thessaloniki, February 2001.

9. W. Effelsberg and T. Harder: “Principles of Database Buffer Management”, ACM
Transactions on Database Systems, Vol.9, No.4, pp.560-595, 1984.

10. A. Guttman: “R-trees: A Dynamic Index Structure for Spatial Searching”, Proc.
1984 ACM SIGMOD Conf., pp.47-57, Boston, MA, 1984.

11. Y.W. Huang, N. Jing and E.A. Rundensteiner: “Spatial Joins Using R-trees:
Breadth-First Traversal with Global Optimizations”, Proc. 23rd VLDB Conf.,
pp.396-405, Athens, Greece, 1997.

12. G.R. Hjaltason and H. Samet: “Incremental Distance Join Algorithms for Spatial
Databases”, Proc. 1998 ACM SIGMOD Conf., pp.237-248, Seattle, WA, 1998.

13. T. Johnson and D. Shasha: “2Q: a Low Overhead High Performance Buffer Man-
agement Replacement Algorithm”, Proc. 20th VLDB Conf., pp.439-450, Santiago,
Chile, 1994.

14. S.T. Leutenegger and M.A. Lopez: “The Effect of Buffering on the Performance of
R-Trees”. Proc. ICDE Conf., pp.164-171, Orlando, FL, 1998.

15. E.J. O’Neil, P.E. O’Neil and G. Weikum: “The LRU-K Page Replacement Algo-
rithm for Database Disk Buffering”, Proc. 1993 ACM SIGMOD Conf., pp.297-306,
Washington, DC, 1993.

16. A. Papadopoulos and Y. Manolopoulos: “Global Page Replacement in Spatial
Databases”, Proc. DEXA’96, Conf., pp.855-864, Zurich, Switzerland, 1996.

17. A. Papadopoulos, P. Rigaux and M. Scholl: “A Performance Evaluation of Spatial
Join Processing Strategies”, Proc. 6th SSD Conf., pp.286-307, Hong Kong, China,
1999.

18. G.M. Sacco: “Index Access with a Finite Buffer”, Proc. 13th VLDB Conf., pp.301-
309, Brighton, England, 1987.

19. M. Stonebraker, J. Frew, K. Gardels and J. Meredith: “The Sequoia 2000 Bench-
mark”, Proc. 1993 ACM SIGMOD Conf., pp.2-11, Washington, DC, 1993.

20. G.M. Sacco and M. Schkolnick: “A Mechanism for Managing the Buffer Pool in
a Relational Database System Using the Hot Set Model”, Proc. 8th VLDB Conf.,
pp.257-262, 1982.



Enhancing an Extensible Query Optimizer with Support
for Multiple Equivalence Types

Giedrius Slivinskas and Christian S. Jensen

Department of Computer Science, Aalborg University, Denmark
http://www.cs.auc.dk/˜{giedrius|csj}

Abstract. Database management systems are continuously being extended with
support for new types of data and advanced querying capabilities. In large part
because of this, query optimization has remained a very active area of research
throughout the past two decades. At the same time, current commercial optimizers
are hard to modify, to incorporate desired changes in, e.g., query algebras or
transformation rules. This has led to a number of research contributions aiming to
create extensible query optimizers, such as Starburst, Volcano, and OPT++.
This paper reports on a study that has enhanced Volcano to support a relational
algebra with added temporal operators, such as temporal join and aggregation.
These enhancements include the introduction of algorithms and cost formulas
for the new operators, six types of query equivalences, and accompanying query
transformation rules. The paper describes extensions to Volcano’s structure and
algorithms and summarizes implementation experiences.

1 Introduction

Query optimization has remained subject to active research for more than twenty years.
Much research has aimed at enhancing existing optimization technology to enable it
to support the requirements, such as for new types of data and queries, of the many
and new types of application areas, to which database technology has been introduced
over the years. However, current commercial optimizers remain hard to extend and
modify when new operators, algorithms, or transformations have to be added, or when
cost estimation techniques or search strategies have to be changed [4]. As a result,
the last decade has witnessed substantial efforts aiming to develop extensible query
optimizers that would make such changes easier. Representative examples of extensible
query optimizers include Starburst [8], Volcano [7], and OPT++ [11].

This paper reports on a specific study that has enhanced the Volcano extensible query
optimizer to support a relational algebra with temporal operators such as temporal join
and aggregation [15]. In addition to new operators, cost formulas, selectivity-estimation
formulas, and transformation rules, the algebra offers systematic support for order preser-
vation and duplicate removal and retention for all queries, as well as for coalescing for
temporal queries (in coalescing, several tuples with adjacent time periods and otherwise
identical attribute values are merged into one). To support order, relations are defined as
lists, and six kinds of relation equivalences are defined – two relations can be equivalent
as lists, multisets, and sets, and two temporal relations can be snapshot-equivalent as lists,

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 55–69, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



56 G. Slivinskas and C.S. Jensen

multisets, and sets. We report on the design decisions and implementation experiences,
and we evaluate Volcano’s extensibility.

An important goal of the algebra is to offer a foundation for a layered temporal
DBMS that may evaluate temporal queries faster than do current DBMSs. The latter
do not have efficient algorithms for expensive temporal operations such as temporal
aggregation, while such operations can be evaluated efficiently at the user-application
level by algorithms that use cursors to access the underlying data [16].

New algorithms can be added to a DBMS via, e.g., user-defined routines in In-
formix [2,9] or PL/SQL procedures in Oracle [13], but these methods currently do not
allow to define functions that take tables as arguments and return tables [10]; nor do they
allow to specify transformation rules, cost formulas, and selectivity-estimation formulas
for the new functions. Because of these limitations, a middleware component with query
processing capabilities was introduced, which divides the query processing between it-
self and the underlying DBMS [16]. Intermediate relations can be moved between the
middleware and the DBMS by the help of transfer operators.

To adequately divide the processing, the middleware has to take optimization
decisions – for this purpose, we employ the Volcano extensible optimizer. Use of a
separate middleware optimizer allows us to take advantage of transformation rules and
cost and selectivity-estimation formulas specific to the temporal operators.

This paper summarizes design issues and experiences from the implementation of
the optimizer. While the addition of new temporal operators, their cost and selectivity-
estimation formulas, and transformation rules could be done using the extensibility
framework provided by Volcano, adding support for multiple types of equivalences be-
tween relations required changes inVolcano structures, and in its search-space generation
and plan-search algorithms.

To our knowledge, no existing extensible query optimizers systematically support
sets, multisets, and lists. Sorting is treated differently than the common operators, such
as selection or join, and it usually is considered in the query optimization only after
the search space of possible query plans has been generated. However, particularly
due to recent introduction and increasing use of TOP N and BOTTOM N predicates in
queries [3], sorting could be exploited better in query optimization if considered during
the search-space generation.

The paper is structured as follows. In Sect. 2, we present Volcano’s architecture.
Section 3 describes the enhancements to Volcano that were necessary to support the
algebra introduced above. The algebraic framework is described first, with a focus on
the parts that posed challenges to Volcano, and the modifications are described next.
Section 4 summarizes the implementation experiences and evaluates the extensibility of
Volcano. Section 5 covers related work, and Sect. 6 concludes the paper.

2 Description of Volcano

The Volcano Optimizer Generator is a software program for generating extensible query
optimizers. The input to the program is a query algebra: operators, their implementation
algorithms (physical operators), transformation rules, and implementation rules. Trans-
formation rules specify equivalent logical expressions, and implementation rules specify



Enhancing an Extensible Query Optimizer with Support 57

which algorithms implement which operators. The output is an optimizer, which takes
a query in the given algebra as input and returns a physical expression (an expression of
algorithms) representing the chosen query evaluation plan. The optimizer implementor’s
tasks include the specification of the input and the coding of the support functions – such
as the selectivity estimation – for operators and rules.

2.1 Two Stages of Query Optimization

The Volcano optimizer optimizes queries in two stages. First, the optimizer generates the
entire search space consisting of logical expressions generated using the initial query plan
(to which the query is mapped to) and the set of transformation rules. The search space is
represented by a number of equivalence classes. An equivalence class may contain one
or more logically equivalent expressions, also called elements; each of these includes
an operator, its parameter (for example, predicates for the selection), and pointers to its
inputs (which are also equivalence classes).

Consider a simple example query, which per-
� �

� � � � � �

� � � 	 


� �  	 � 	 � �  � � � � �

(a)

1

2

3

POSITION

 SALARY

(b)

Fig. 1. A Query Plan and its Search
Space

forms a join on the EmpID attribute of POSITION
and SALARY relations. Its one possible initial plan
is shown in Fig. 1(a) and its search space is shown
in Fig. 1(b). The elements of classes 1 and 2 repre-
sent logical expressions returning partial results
of the query, i.e., the operators retrieving, respec-
tively, the POSITION and SALARY relations. The
elements of class 3 represent logical expressions
returning the result of the complete query; either
the first or the second element may be used. Es-
sentially, the given search space represents only
two plans which differ in the order of the join
arguments.

During the second stage of Volcano’s opti-
mization process, the search for the best plan is
performed. Here, the implementation rules are
used to replace operators by algorithms, and the
costs of diverse subplans are estimated. For the
given query, the number of plans to be considered
is greater than two, because the relations may be
retrieved by using either full scan or index scan,
and the join may be implemented by, e.g., nested-
loop, sort-merge, or index join. One possible evaluation plan is to scan both relations
and perform a nested-loop join.

The following two sections briefly describe the search-space generation and the
plan-search algorithms; for more detail, we refer to [7].



58 G. Slivinskas and C.S. Jensen

2.2 Stage One: Search-Space Generation

The search-space generation is performed by the Generate function. Initially, one ele-
ment is created for each operator in the original query expression, and then Generate
is invoked on the top element.

The Generate function repeatedly applies transformation rules to the given element,
choosing among the applicable rules that have not so far been applied to the element.
The application of a transformation rule may trigger the creation of new elements and
classes; for each newly generated element, the Generate function is invoked.

For the query in Fig. 1(a), the search space is generated as follows. Initially, three
elements representing the three query-tree operators are created (the first elements of
equivalence classes 1–3 in Fig. 1(b)). Then, the Generate function is invoked for the
first element of class 3, which, in turn, invokes Generate for the first elements of classes
1 and 2. The latter two Generate calls do not do anything because no rules apply to the
elements of class 1 and 2. For the first element of class 3, however, the join commutativity
rule is applied, and a second element pointing to switched join arguments is added to
class 3. Then, the Generate function is invoked on the new element of class 3, but no
new elements are generated: the join commutativity rule is applied again, but its resulting
right-hand element already exists in the search space.

2.3 Stage Two: Plan Search

When searching for a plan, the Volcano optimizer employs dynamic programming in a
top-down manner, and it uses the FindBestPlan function recursively.

First, the optimizer invokes the FindBestPlan function for the first element of the
top equivalence class – e.g., class 3 in Fig. 1(b) – and a cost limit of infinity (the cost limit
can be lower in subsequent calls to the function). If all elements of the class containing the
argument element have already been optimized, no further optimization for the element
is necessary: if the plan has been found and its cost is lower than the cost limit, it is
returned, if not – NULL is returned. Otherwise, optimization has to be performed.

During the optimization, for each algorithm implementing the top operator (in our
case, join), FindBestPlan is recursively invoked on the inputs to the algorithm. If
optimization of the inputs is successful, the plan with the algorithm yielding the cheapest
expected cost is chosen as the best plan. Then, FindBestPlan is recursively invoked for
each equivalent logical expression (in our case, for the second element in equivalence
class 3) to see if a better plan can be found. In case a better plan is found, it is saved in
memory as the best one.

3 Enhancement of Volcano

The implementation of the algebra and its accompanying transformation rules intro-
duces several concepts that did not exist previously in Volcano; these new concepts are
described in Sect. 3.1. Sections 3.2 and 3.3 concern the actual implementation.



Enhancing an Extensible Query Optimizer with Support 59

3.1 Algebra and Multi-equivalence Transformation Rules

First, we overview the architecture for which the algebra has been designed. Next, we
describe the actual algebra, the accompanying transformation rules, and their applica-
bility, focusing on the new concepts. Finally, we outline the challenges that these new
concepts pose to Volcano.

Architecture. The temporally extended relational algebra [15] has been designed for an
architecture consisting of a middleware component and an underlying DBMS. Expensive
temporal operations such as temporal aggregation do not have efficient algorithms in
the DBMS, but can be evaluated efficiently by the middleware, which uses a cursor to
access DBMS relations [16]. Consequently, query processing is divided between the
middleware and the DBMS; the main processing medium is still the DBMS, but the
middleware is used when this can yield better performance.

Algebra. The algebra differs from the conventional relational algebra in several aspects.
First, it includes temporal operators such as temporal join and temporal aggregation.
Next, it contains two transfer operators that allow to partition the query processing be-
tween the middleware and the DBMS. Finally, the algebra provides a consistent handling
of duplicates and order at logical level, by treating duplicate elimination and sorting as
other logical operators and by introducing six types of relation equivalences.

Two relations are equivalent (1) as lists if they are identical lists ( ≡L ); (2) as mul-
tisets if they are identical multisets taking into account duplicates, but not order ( ≡M );
and (3) as sets if they are identical sets, ignoring duplicates and order ( ≡S ). Two tempo-
ral relations are snapshot-list ( ≡S

L ), snapshot-multiset( ≡S
M ), or snaphot-set equivalent

( ≡S
S ), if their snapshots (projections at a given point in time) are equivalent as lists,

multisets, or sets.
Figure 2 shows two temporal relations (relations having two attributes indicating a

time period), POSITION and SALARY. We assume a closed-open representation for time
periods and assume the time values for T1 and T2 denote months during some year. For
example, Tom was occupying position Pos1 from February to August (not including
the latter).

POSITION SALARY Result
PosID EmpID Name T1 T2 EmpID Amount T1 T2 EmpID Name PosID Amount T1 T2
Pos1 1 Tom 2 8 1 100K 2 6 1 Tom Pos1 100K 2 6
Pos2 2 Jane 3 8 1 120K 6 9 1 Tom Pos1 120K 6 8

2 110K 3 8 2 Jane Pos2 110K 3 8

Fig. 2. Relations POSITION and SALARY, and the Result of Temporal Join

A temporal join is a regular join, but with a selection on the time attributes, ensuring
that the joined tuples have overlapping time periods; Figure 2 shows the result of temporal
join on the EmpID attribute of the POSITION and SALARY relations.



60 G. Slivinskas and C.S. Jensen

Transformation Rules. Six types of equivalences lead to six types of transformation rules,
since a transformation rule may satisfy several of the six equivalences. Let us consider
two rules for temporal join, ��T . For a given rule, we always specify the strongest
equivalence type that holds; the ordering of equivalence types is given in Fig. 3. The
join commutativity rule r1��T r2 →M r2��T r1 says that the relations resulting from
the left-hand and right-hand sides are equivalent as multisets (and, according to the
type ordering, as sets, as well as their snapshots are equivalent as sets and multisets).
Meanwhile, the sort push-down rule sortA(r1��T r2) →L sortA(r1)��T r2, where A
belongs to the attribute schema of r1 and the left-hand side operations are located in
the middleware, says that the relations are equivalent as lists and that the other five
equivalence types also hold.1 The latter rule exploits the fact that all temporal join
algorithms in the middleware retain the sorting of their left arguments.

Applicability of Transformation Rules. Transformation rules that do not guarantee ≡L

equivalence cannot always be applied, as illustrated by the following example. Consider
a query that performs the above-mentioned temporal join and sorts the result by Name.
One possible initial plan for this query is shown in Fig. 4(a). The bottom operators
represent relations POSITION and SALARY transferred to the middleware; to achieve this,
at least two operations are necessary (a table scan in the DBMS and the actual transfer),
but to simplify the example, we view them as one operation and do not consider any
transformation rules related to these operations. Temporal join and sorting are performed
in the middleware.

Let us consider rule r1��T r2 →M r2��T r1. This rule can

S

M

L

SL

SM

SS

Fig. 3. Ordering of
Equivalence Types

be applied to switch the arguments of the join. However, if we
apply the sort push-down rule first and move the sorting below the
temporal join, before the temporal join’s left argument (leading to
the plan shown in Fig. 4(b)), the application of join commutativity
rule would lead to an incorrectly ordered query result. Thus, to be
able to tell when an →M rule is applicable, the optimizer needs to
know the importance of order at each node in the query tree, i.e.,
whether the result of the operation at the node has to preserve some
order or not. In the algebra, this importance is determined by the
OrderRequired property. To determine the applicability of rules
of other types, two additional properties, DuplicatesRelevant and
PeriodPreserving, are used; the first is True if the operation at the node cannot arbitrarily
add or remove duplicates, and the second is True if the operation at the node cannot
replace its result with a snapshot-equivalent one. For each rule of a given type, Table 1
shows the applicability condition for operator nodes on the left-hand side of the rule.

Having an initial query plan, the properties for operators are set in a top-down
manner and then adjusted every time a new transformation rule is applied. For the top
operator, the properties are set in accordance with the specific user-level query language
and query statement, e.g., an SQL query requires the result to be sorted if the ORDER
BY clause is specified at the outer-most level. Consequently, for the top element, the
OrderRequired property is set to True only if the ORDER BY clause is specified at
the outer-most level. The DuplicatesRelevant and PeriodPreserving properties are
always set to True, because we always care about duplicates and time periods. For the

1 To be precise, the relations are ≡L,A equivalent, i.e., their projections on A are ≡L equivalent.
We will use ≡L equivalence for simplicity.



Enhancing an Extensible Query Optimizer with Support 61

Fig. 4. Query Plans

other operators, the properties are set according to the property values of their parents,
e.g., if some operator is the input to the sort operator, its OrderRequired property will be
set to False, because its resulting relation may be replaced (via some transformation rule)
by a multiset-equivalent relation, and the correct order of the result will still be ensured
by the following sort operator. For more details about setting the property values, we
refer to [15].

Support in Volcano. Volcano provides a framework of adding new operators and trans-
formation rules, which allows a rather straightforward addition of temporal operators
and transfer operators, their cost formulas, selectivity-estimation formulas, and schema
propagation formulas. The difficult part is to incorporate different types of transforma-
tion rules. While different rule types can be added by just introducing an extra type
attribute to each rule, to control their applicability is more difficult. The property mech-
anism cannot directly be used because of Volcano’s search-space structure. Having a
Volcano search space, values of the three properties cannot be determined for an ele-
ment, because it is impossible to know the property values of the elements above since
the same equivalence-class element may be used as input by different elements of differ-
ent equivalence classes, as shown later in Fig. 5 where the first element of equivalence
class 2 is used both by two elements of equivalence class 3 and by two elements of class
4. Therefore, the determination of the properties can only occur during the actual search,
which is performed top down.

Table 1. Applicability of a Rule According to its Type

Rule type Applicability condition, ∀op ∈ lhs
→L True
→M ¬OrderRequired(op)
→S ¬DuplicatesRelevant(op) ∧ ¬OrderRequired(op)
→S

L ¬PeriodPreserving(op)
→S

M ¬OrderRequired(op) ∧ ¬PeriodPreserving(op)
→S

S ¬DuplicatesRelevant(op) ∧ ¬OrderRequired(op) ∧ ¬PeriodPreserving(op)



62 G. Slivinskas and C.S. Jensen

3.2 Adjustment of the Search-Space Generation

Since it is impossible to determine properties during the search-space generation, we
generate a complete search space by applying transformation rules of all types, and
then filter away invalid elements during the actual search. The identification of invalid
elements is enabled by recording, for each element, a type that represents the combi-
nations of the three property values for which this element may be used. We use six
possible type values – L, M, S, SL, SM, SS – which correspond to the six equivalence
types. Consequently, the relationship between each element type and the combination
of properties corresponds to Table 1. For example, if all properties are True, only L type
elements are valid. Intuitively, the element type tells how the relation generated by this
element will be equivalent to the first element of the equivalence class.

Figure 5 shows the search space for the query in Fig. 4(a), generated using the
join commutativity rule and the sort push-down rule (the first one guarantees ≡M

equivalence, while the second one guarantees ≡L equivalence). Initially, four elements
representing the four query-tree operators are created (the first elements of equivalence
classes 1–4). Then, the join commutativity rule is applied to the first element of class 3,
and a second element representing switched join arguments is added to the class. The
sort push-down rule is applied to the first element of class 4, and two new elements are
created, one of which is added to class 4 and one of which becomes the only element of
class 5. Finally, the join commutativity rule is applied to the second element of class 4,
yielding the third element in the class.

1

sort

T

T T

T

2

4

5

3

sort

M

M

M M

L L M

L

POSITION

 SALARY

Fig. 5. Search Space



Enhancing an Extensible Query Optimizer with Support 63

The first elements of classes 1–3 have equivalence type M only, because the base
relations are retrieved from the DBMS, and we do not know in which order the DBMS
will deliver them. It may happen that a subquery whose top element is the first element
of class 3, when run twice, would return relations that are only multiset equivalent.

The third element of class 4 is only ≡M equivalent to the other two elements of that
class. Since the query requires a sorted result (the OrderRequired property value for the
top operator is True), only the two first elements of class 4 will be used during plan
search. Below, we discuss how the element types are determined.

During the search-space generation, new elements are added after applying trans-
formation rules. For a transformation rule, we give below a procedure for how to set the
types of elements resulting from the right-hand side of the rule.

1. The top-element type (the element representing the top operator in the right-hand
side of the rule) is set to the type which is the greatest common descendant of the
transformation-rule type and the types of the elements participating in the left-hand
side of the transformation rule.

2. The top-element type is set to a stronger type than specified in 1 only if the right-
hand side contains an operation – such as sorting or duplicate elimination – that
would enforce a “stronger” equivalence between the new top element and the old
top element.

3. The types of other new elements resulting from the right-hand side of the rule are
set to any value, but they have to be equal to or stronger than the top-element type.

For example, the greatest common descendant of types M and SM is SS. Let us
consider the search space in Fig. 5: the join commutativity rule applied to the second
element of class 4 results in the third element of class 4, and its type is set to M, which is
the greatest common descendant of L (the type of the second element) and M (the type
of the rule).

Now let us consider another query, which performs a selection on relation r trans-
ferred to the middleware and then sorts it; see its search space in Fig. 6(a). After trans-
formation rule sortA(σP (r)) →L σP (sortA(r)) is applied to the first element of class
3, the new top element – which becomes the second element of class 3 – is of type
L (Fig. 6(b)). Even if the sorting is not at the top level, the result is correctly ordered
because the selection retains the order of its argument.

In the given examples, the types of the new non-top elements are set to L. Generally,
the types of non-top elements are not important for the correctness, as long as they are not
descendants of the new top element type (see the equivalence-type ordering in Fig. 3).
Therefore, they should be set aiming to have as small search space as possible, i.e., if
an element has to be inserted, first we can look in the existing search space if the same
element (with any type) exists there, and if it does, we do not need to insert it anew. If no
elements exist, a new element should have L type, because most rules are of →L type
and it is likely that, if this element is to be attempted to be inserted again as a top-level
element, its type will be L.



64 G. Slivinskas and C.S. Jensen

1 1

2

3

r

σ

M

L

sort

2

4

3

r

σ

σ

M

L L

L

sort

sort

M M

(a) (b)

Fig. 6. Search Space Before (a) and After (b) Applying sortA(σP (r)) →L σP (sortA(r))

3.3 Modification of the Plan Search

For the actual search, the code that controls the validity of elements depending on their
type has to be added to Volcano.

The most significant change is the addition of properties to the parameter list of the
FindBestPlan function. The function uses its input properties to check the validity of
its input element, as mentioned in Sect. 3.2, as well as to set the parameter properties
for calling itself recursively on the inputs to its input element.

Since equivalence-class elements might be of any of the six different types, each
equivalence class may have up to six physical plans, because plans for different-type
elements might differ. For example, it is likely that a type M plan will be simpler and
less costly than a type L plan. In the FindBestPlan function, when looking if a plan
already exists for the input element, we have look for a plan of a type that is stronger
than or equal to the input-element type.

4 Experiences

In this section, we consider the extensibility of Volcano in relation to the needs of our
framework. We evaluate its support for multiple types of equivalence, discuss other
extensions, and evaluate the ease of extensibility.

4.1 Support for Multiple Types of Equivalences

When considering multiple types of equivalences, sorting, duplicate elimination, and
coalescing are important operations, because they may change the equivalence type



Enhancing an Extensible Query Optimizer with Support 65

between two relations. For example, if two ≡M equivalent relations are sorted on A,
their sorted versions will be ≡L,A equivalent.

Coalescing and duplicate elimination were not implemented in Volcano, and sorting
is supported by the so-called physical properties of an equivalence class. The possible
use of sorting algorithms (termed enforcers) is considered during the second phase
(plan search) of query optimization. Physical properties are passed as arguments to the
FindBestPlan function, and they allow the optimizer to consider different positions of
sort enforcers. The use of physical properties increases the code complexity and size –
for each algorithm implementing an operator, the optimizer implementor has to write
functions deriving physical properties of the algorithm’s inputs, checking whether the
algorithm satisfies required physical properties, and finding physical properties that are
required from the algorithms’s inputs.

In our approach, we treat sorting, duplicate elimination, and coalescing as all the
other operators and exploit them in the search-space generation, not using physical
properties. While it may be possible to pursue a direction where sorting, duplicate elim-
ination, and coalescing are all treated as enforcers and employ physical properties, we
feel that this treatment would add unneccesary complexity to the framework because,
fundamentally, sorting, coalescing, and duplicate elimination are just like other opera-
tors, having their transformation rules and statistics-derivation formulas. Treating them
as algorithms reduces the number of transformation rules, but the complexity in the plan-
search algorithm is greatly increased. In addition, it would be problematic to incorporate
the statistics-estimation formulas for duplicate elimination and coalescing.

4.2 Other Useful Extensions

Our implementation has indicated the need for new or better support in a number of
other areas.

The two-stage query optimization of Volcano forced us to apply all types of trans-
formation rules during the first stage. If one stage with a top-down plan search and
generation had been used, it would have been easier to control the applicability of the
different types of rules and, possibly, would have improved performance.

The search strategy ofVolcano is fixed, and no mechanisms for extending or changing
it are provided. Proposed improvements of Volcano that were not part of the available
code include a mechanism for heuristic guidance, where rules can be ordered according
to their “promise” [7]. Such ordering implies that the rules having the best probability to
yield better plans would be applied as soon as possible, reducing the overall plan-search
time.

We had to add support for equivalence-class elements that point to their own equiv-
alence classes, because this facility was not available in the code supplied. The pointing
to the same class often occurs using different equivalence types. For example, sorted
relation r is multiset equivalent to r, yielding to a class with two elements (one for r
sorted and one for r) where the first (sorting) points to the same class. In addition, we
had to implement the linking of classes; the linking is needed when we apply a rule to
an element of a certain class and find that the resulting element already exists in some
other class, meaning that both classes represent the same logical expression.



66 G. Slivinskas and C.S. Jensen

The cardinality of a relation resulting from some equivalence class is estimated
when the class is created, according to the selectivity estimation method of the operator
represented in the first element. When a new element is added to the class, the cardinality
is not reestimated. However, the new element may represent an operator for which we
may have a better method for estimating the cardinality. For example, it is easier to
estimate the size of a join, than the size of a Cartesian product followed by a selection
and a projection. Therefore, we had to ensure that the initial plan would contain operators
with good cardinality estimation methods.

4.3 Ease of Extensibility

The main challenge for an extensible query optimizer is to balance the efficiency and ex-
tensibility, and our study indicates that Volcano’s main emphasis is put on the first aspect.
Volcano is coded in C and does not follow the object-oriented paradigm, which leads to
many interconnected structures, which in turn posed difficulties in figuring out where
the structures were defined, initialized, and used. The transformation-rule application
code is being generated automatically and does not follow any style guidelines, making
it difficult to modify (which was needed when incorporating the necessary modifications
in the search-space generation). A lot of arrays and structures have predefined sizes and
were not being allocated dynamically, occupying more memory than necessary and pro-
viding low scalability. On the other hand, the running times of Volcano (for queries not
involving many joins) were quite low, as shown in [16].

The actual implementation tasks, their difficulty, and approximate number of lines of
resulting code are summarized in Table 2. We divide the entire implementation effort into
three subtasks. The first one, adding support for multiple equivalence types, is the most
difficult, and it has been described in the previous sections. Yet the amount of resulting
code was rather small. The other task was to add new operators, and while it resulted
in a substantial amount of code, it was not difficult, after learning Volcano’s provided
framework for adding new operators and transformation rules. The same applies to the
last task of adding new algorithms; there, however, the amount of code was smaller,
because we did not use physical properties.

Support functions form the biggest part of the code added by the optimizer im-
plementor and their size is proportional to the number of operators and algorithms
implemented. In our case, we implemented relation retrieval, selection, projection, join,
sort-preserving join, temporal join, Cartesian product, duplicate elimination, aggrega-
tion, temporal aggregation, and two transfer operators. Similar behavior of many of
these operators (particularly, in the propagation of catalog information) resulted in a lot
of code repetition in corresponding support functions.

5 Related Work

Our paper takes its outset in the algebraic framework presented in [15]. The framework
has been validated by implementing it using theVolcano optimizer and the XXL library of
query evaluation algorithms; the architecture, cost and selectivity-estimation formulas,
and performance studies have been reported in [16]. The latter paper did not cover the
enhancements to Volcano, which are the foci of this paper.



Enhancing an Extensible Query Optimizer with Support 67

Table 2. Tasks, Their Complexity, and Amount of Code

Task Complexity Lines of Code

Adding equivalence-type support
Modifying structures medium < 200
Modifying search-space generation high < 200
Modifying plan search high < 200

Adding new operators
Coding support functions medium ∼ 2500
Coding management of the three properties medium ∼ 400
Coding transformation rules medium ∼ 2300

Adding new algorithms
Coding support functions low ∼ 1300
Coding implementation rules medium < 200

While to our knowledge, nobody has enhanced existing optimizers with support for
sets, multisets, and lists, reference [1] reports on experiences from building the query
optimizer for Texas Instruments’ Open OODB system using Volcano. That paper finds
the optimization framework useful, but mentions that much time was spent on writing
support and cost functions and that the interface for these tasks is not user-friendly. We
agree with these statements, and we draw additional conclusions in Sect, 4.

A number of other extensible query optimizers exist. Volcano evolved from the Exo-
dus optimizer [6], and later was enhanced by the Cascades optimization framework [5],
which provides a clean interface and implementation that makes full use of C++ classes,
as well as more closely integrates transformation rules and implementation rules, which
are distinct sets in Volcano. Since Cascades was intended to be used for Microsoft’s
SQL Server, its code is not available. Neither is the code for the Starburst query opti-
mizer [8] used in IBM’s DB2, nor is the code of the EROC toolkit for building query
optimizers [12].

The OPT++ [11] extensible optimizer also uses an object-oriented design with C++
classes to simplify the extension tasks. OPT++ offers a number of search strategies,
including “bottom-up” system R-style [14] and the Volcano search strategy; and it can
emulate both Starburst and Volcano.

6 Conclusions

A number of extensible query optimizers are available that aim to facilitate changes in
query algebras and additions of new functionality. Our study reports on the enhancement
of one prominent such extensible query optimizer, Volcano, to support an extended
relational algebra, which – in addition to new temporal operators – contains six types
of equivalences between relations that lead to six corresponding types of transformation
rules. We describe howVolcano’s search-space generation and plan search were modified
in order to support the algebra, and we evaluate the extensibility of Volcano.

The study indicates that support for sets, multisets, and lists is difficult to add to a pre-
existing extensible query optimizer – such support should be considered already during



68 G. Slivinskas and C.S. Jensen

the design of an extensible query optimizer. Volcano’s two-staged optimization strategy
forces the application of all transformation rules, disregarding their type, during the
first stage; if the optimization had occurred in a single stage, we speculate that it would
have been easier to control the applicability of rule types and that better performance
would have resulted. We also found that, for the modifications we considered, Volcano’s
interface was not always user-friendly and that the amount of code needed to implement
support functions was quite substantial. On the other hand, we found Volcano to be a
very useful tool that allowed us to validate our algebra in the middleware architecture
more quickly than if we would have had to develop our own optimizer.

This study indicates that extensible query optimizers are useful when testing research
ideas and building prototypes. We also believe that extensible optimizers, if developed
in industrial strength versions, will prove very useful when building middleware sys-
tems that focus on specific functionality suitable for applying conventional relational
query optimization techniques. The application of extensible technology to middleware
systems is a promising research direction. Due to the increasing use of user-defined rou-
tines in conventional DBMSs, optimizer extensibility is also important when creating
new DBMSs or modifying existing ones. Finally, the study reported upon here indicates
that more research is needed in query optimization and processing that offer integrated
support for sets, multisets, and lists.

Acknowledgements. We are grateful to Richard Snodgrass, who took part in the research
that lead to the query optimization framework, the Volcano-based implementation of
which is reported in this paper.

The research reported here was supported in part by the Wireless Information Man-
agement network, funded by the Nordic Academy for Advanced Study through grant
000389, by the Danish Technical Research Council through grant 9700780, and by a
grant from the Nykredit Corporation.

References

1. J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences Building the Open OODB Query
Optimizer. In Proceedings of ACM SIGMOD, pp. 287–296 (1993).

2. R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Developing a DataBlade for a New
Index In Proceedings of IEEE ICDE, pp. 314–323 (1999).

3. M. J. Carey and D. Kossmann. Processing Top N and Bottom N Queries. Data Engineering
Bulletin, 20(3):12–19 (1997).

4. S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In Proceedings of
ACM PODS, pp. 34–43 (1998).

5. G. Graefe. The Cascades Framework for Query Optimization. Data Engineering Bulletin,
18(3):19–29 (1995).

6. G. Graefe and D. J. DeWitt. The Exodus Optimizer Generator. In Proceedings of ACM
SIGMOD, pp. 160–172 (1987).

7. G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient
Search. In Proceedings of IEEE ICDE, pp. 209–218 (1993).

8. L. M. Haas et al. Starburst Mid-Flight:As the Dust Clears. IEEE TKDE, 2(1):143–160 (1990).
9. Informix Software. DataBlade Overview. URL: <www.informix.com/products/

options/udo/datablade/>, current as of May 29, 2001.



Enhancing an Extensible Query Optimizer with Support 69

10. M. Jaedicke and B. Mitschang. User-Defined Table Operators: Enhancing Extensibility for
ORDBMS. In Proceedings of VLDB, pp. 494-505 (1999).

11. N. Kabra and D. J. DeWitt. OPT++: An Object-Oriented Implementation for Extensible
Database Query Optimization. VLDB Journal, 8(1):55–78 (1999).

12. W. J. McKenna, L. Burger, C. Hoang, and M. Truong. EROC: A Toolkit for Building NEATO
Query Optimizers. In Proceedings of VLDB, pp. 111–121 (1996).

13. Oracle Technology Network. Overview of PL/SQL. URL: <otn.oracle.com/tech/
pl sql/>, current as of May 29, 2001.

14. P. G. Selinger et al. Access Path Selection in a Relational Database Management System. In
Proceedings of ACM SIGMOD, pp. 23–34 (1979).

15. G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates and Ordering. IEEE TKDE, 13(1):21–49 (2001).

16. G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Adaptable Query Optimization and Evalu-
ation in Temporal Middleware. In Proceedings of ACM SIGMOD, pp. 127–138 (2001).



Information Sources Registration at a Subject
Mediator as Compositional Development

Dmitry O. Briukhov, Leonid A. Kalinichenko, and Nikolay A. Skvortsov

Institute for Problems of Informatics RAS
{brd,leonidk,scvora}@synth.ipi.ac.ru

Abstract. Method for heterogeneous information source registration at
subject mediators with local as view (LAV) organization is presented.
LAV approach considers schemas exported by sources as materialized
views over virtual classes of the mediator. This approach is intended to
cope with a dynamic, possibly incomplete set of sources. To disseminate
the information sources, their providers should register them at a respec-
tive subject mediator. Such registration can be done concurrently and at
any time.
The registration method proposed is new and contributes to the follow-
ing. The method is applicable to wide class of source specification models
representable in hybrid semistructured/object canonical mediator model.
Ontological specifications are used for identification of mediator classes
semantically relevant to a source class. Maximal subset of source informa-
tion relevant to the mediator classes is identified. Concretizing types are
defined so that federated classes instance types are refined by the source
instance type. This direction naturally supports query planning refining
a mediator query in terms of a specific source. Such refining direction
is in contrast to conventional compositional development where specifi-
cation of requirements is to be refined by specifications of components.
Such inversion is natural for the registration process: a materialized view
(requirements) is constructed over virtual specifications (components).

1 Introduction

Mediation of heterogeneous information sources provides an approach for intel-
ligent information integration. Mediation architecture introduced in [20] defines
an idea of a middleware positioned between information sources (information
providers) and information consumers. Mediators support modelling facilities
and methods for conversion of unorganized, nonsystematic population of au-
tonomous information sources keeped by different information providers into a
well-structured information collection defined by the integrated uniform specifi-
cations. Mediators provide also a uniform query interface to the multiple data
sources, thereby freeing the user from having to locate the relevant sources,
query each one in isolation, and combine manually the information from them.
Important application areas greatly benefit from the subject mediation approach
supporting information integration in a particular subject domain. Among them

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 70–83, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Information Sources Registration at a Subject Mediator 71

are Web information integration systems, digital libraries providing content in-
teroperability, digital repositories of knowledge in certain domains (like: Digital
Earth, Digital Sky, Digital Bio, Digital Law, Digital Art, Digital Music).

For such areas, according to the approach, the application domain model is
to be defined by the experts in the field independently of relevant information
sources. This model may include specifications of data structures, terminologies
(thesauri), concepts (ontologies), methods applicable to data, processes (work-
flows), characteristic for the domain. These definitions constitute specification
of a subject mediator. After subject mediator had been specified, information
providers can disseminate their information for integration in the subject domain
independently of each other and at any time. To disseminate they should register
their information at the subject mediator. Users may not know anything about
the registration process and about the sources that have been registered. Users
should know only subject domain definitions that contain concepts, structures,
methods approved by the subject domain community. Thus various information
sources belonging to different providers can be registered at a mediator.

The subject mediation approach is applicable to various subject domains
in science, cultural heritage, mass media, e-commerce, etc. This technology is
considered as a promising alternative to the widely used general purpose Web
search engines characterized by very low precision of search due to uncontrollable
use of terms for indexing and search. This is unavoidable payment for simplicity
of sites “registration” at the engines.

Two basic approaches are known for the mediator architectures [6]. According
to the first one, called Global as View (GAV), the global schema is constructed
by several layers of views above the schemas exported by pre-selected sources.
Queries are expressed in terms of the global schemas and are evaluated similarly
to the conventional federated database approaches [17]. TSIMMIS [7] or HER-
MES [18] apply this architecture. Another approach, known as Local as View
(LAV), considers schemas exported by sources as materialized views over virtual
classes of the mediated schema. Queries are expressed in terms of the mediated
schema. Query evaluation is done by query planning making its rewriting in
terms of the source schemas. Information Manifold [14] or Infomaster [5] apply
this strategy. The LAV architecture is designed to cope with a dynamic, possibly
incomplete set of sources. Sources may change their exported schemas, become
unavailable from time to time. LAV is potentially scalable with respect to a num-
ber of sources involved. Further in this paper we assume LAV as an approach
suitable for the subject mediation.

Two separate phases of the subject mediator’s functioning are distinguished:
consolidation phase and operational phase. The consolidation phase is intended
for the subject model definition. During this phase the mediator’s federated
schema metainformation is formed. The technique used for that is beyond this
paper.

During the operational phase the burden of the sources registration process
is imposed on the information providers. They formulate sources’ specifications
(schemas, concept definitions, vocabularies) in terms of the subject mediator’s



72 D.O. Briukhov, L.A. Kalinichenko, and N.A. Skvortsov

federated metainformation and develop the required wrappers. In such process
of registration the local metainformation sublayer of the mediator is formed
expressing local schemas in the mediator’s canonical model as views above the
federated schema. Making source registration concurrently by providers is the
way to reach the mediator’s scalability.

During the registration a local source class is modelled as a set of instances
(objects) of the class instance type, and the description of the source in terms
of the federated schema specifies the constraints on the class instances to be
admissible for the subject mediator. Formally, the content of a local source class
is described by a formulae simplified as C(z) ⊆ ∃−

x(C1(
−
x1) &...& Cn(

−
xn) & Con)

where C is a local source class, C1, ..., Cn are federated schema classes, z is
a reduct [10] of the local class instance type being a concretization of a reduct
of resulting instance type of the conjunctive formula that includes only those
attributes of the resulting type whose names are not bound by the existential
quantifier, Con is additional constraints imposed by formulae. That is, the de-
fined reduct of an instance obtained from the local source class should satisfy the
constraint expressed by the formula. Of course, this description does not imply
that the local source contains all the instances that satisfy the formula. Such
representation of local sources means that we do not have to add a local source
class to the federated level whenever sources are added, since this class does not
have to correspond directly to a federated class.

General idea of representation of the local classes in terms of federated classes
is similar to the one proposed in [14]. Main differences of the current approach
consist in taking into account issues more relevant to real environments, such
as using general type model and type specification calculus [10], applying the
refining mapping of the local specific data models into the canonical model of
the mediator [12], resolving ontological differences between federated and local
concepts [2], systematic resolving structural, behavioral and value conflicts of
local and federated types and classes [2].

This paper focuses on analysis methods and tools required to support in-
formation source registration process at the mediator. Main contribution of the
paper is that for the LAV mediation strategy the paper considers the information
source registration as the process of compositional information systems develop-
ment [2]. Local source metainformation definitions are treated as specifications of
requirements and classes of the federated level with the related metainformation
– as specifications of pre-existing components. To get local classes definitions as
views above the federated level with constraints given in the form shown above,
the facilities of the modified compositional information systems development
method and tool [2] are applied. This modified method and tool are considered
to be a part of the mediator’s metainformation support. The method considered
can be useful also for a Data Warehouse (DW) environment. Main difference
between the mediator’s and DW approaches consists in that a mediator schema
is virtual though DW schema is materialized.

At the moment of the paper writing no works considering a source registration
at a LAV-approached mediator as a design process have been identified. Related



Information Sources Registration at a Subject Mediator 73

papers in DW design could have also been expected. Analysis of the latter is given
in the Related Work section. The analysis shows that DW design have different
motivation and apply different methods and models comparing to those that are
needed for a source registration at the LAV-approached mediators.

The paper is composed as follows. After brief characterization of the canon-
ical model and metainformation support at a mediator, the registration process
is treated in detail. The process of compositional development leading to the def-
inition of source classes in terms of classes of the federated level is introduced.
Contextualization of a source at the federated level is a part of this process. Var-
ious aspects of the registration process are illustrated by an example. Cultural
heritage is taken as an application domain assuming that a respective mediator
has been defined. For the sources we exploit slightly modified schemas of Web
sites of Louvre and Uffizi museums and Z39.50 CIMI profile. Due to the paper
size limitation, only some classes of the Uffizi site are included.

2 Related Works

In [4] the DW Schema is considered to be a description of logical content of
the materialized views constituting the DW. Each portion of such schema is
described in terms of a set of definitions of relations, each one expressed in terms
of a query over the DW Domain Model. A view is actually materialized starting
from the data in the sources by means of software components, called mediators.
Source is defined both on a logical level (relations) and on a conceptual level
(E/R). A query is provided to express logical source as a view above conceptual
definitions. Integration is seen as the incremental process of understanding and
representing the relationships between data in the sources, rather than simply
producing a unified data schema. Description logic which treats n-ary relations
as first-class citizens is used for the conceptual modeling of both the subject
domain and the various sources. The approach [4] resembles a consolidation
phase of a GAV mediator.

A common understanding of a “well-designed” DW schema in the literature
[9] is that such schema should have the form of a “star”, i.e., it should con-
sist of a central fact table that contains the facts of interest to an application,
and that is connected to a number of dimension tables through referential in-
tegrity constraints based on the various dimension keys. Since dimensions can be
composed of attribute hierarchies, it is often the case that dimension tables are
unnormalized, and their normalization results in what is known as a snowflake
schema.

Known research works in DW design (including [4,8,9,19]) have different
motivation and apply different methods and models comparing to those that
are needed for a source registration at the LAV-approached mediators or at DW
with a predefined conceptual schema.



74 D.O. Briukhov, L.A. Kalinichenko, and N.A. Skvortsov

3 Fundamentals of the Compositional IS Development
Method

The main distinguishing feature of the method considered is a creation of com-
positions of component specification fragments refining specifications of require-
ments. Widely used component-based development methods (e.g., JavaBeans)
construct aggregates of components differently – just linking ports of compo-
nents with each other or considering their interactions on the contractual basis
[15].

Refining specifications obtained during the compositional development, ac-
cording to the refinement theory, can be used anywhere instead of the refined
specifications of requirements without noticing such substitutions by the users.
The refinement methods [1] allow to justify the fact of a refinement formally to
guarantee the adequacy of the specifications obtained to that of the required.

3.1 Compositional Specification Calculus

The design is a process of systematic manipulation and transformation of speci-
fications. Type specifications of the canonical model (SYNTHESIS) [13] are cho-
sen as the basic units for such manipulation. The manipulations required include
decomposition of type specifications into consistent fragments, identification of
reusable fragments (patterns of reuse), composition of identified fragments into
specifications concretizing the requirements, justification of reusability and sub-
stitutability of the results of such transformations instead of the specifications
of requirements. The compositional specification calculus [10] intentionally de-
signed for such manipulations uses the following concepts and operations.

A signature ΣT of a type specification T =< VT , OT , IT > includes a set of
operation symbols OT indicating operations argument and result types and a set
of predicate symbols IT (for the type invariants) indicating predicate argument
types. Conjunction of all invariants in IT constitutes the type invariant. We
model an extension VT of each type T (a carrier of the type) by a set of proxies
representing respective instances of the type.

Definition 1. Type reduct A signature reduct RT of a type T is defined as a
subsignature Σ′

T of type signature ΣT that includes a carrier VT , a set of symbols
of operations O′

T ⊆ OT , a set of symbols of invariants I ′
T ⊆ IT .

This definition from the signature level can be easily extended to the specifi-
cation level so that a type reduct RT can be considered a subspecification (with
a signature Σ′

T ) of specification of the type T. The specification of RT should be
formed so that RT becomes a supertype of T. We assume that only the states
admissible for a type remain to be admissible for a reduct of the type (no other
reduct states are admissible). Therefore, the carrier of a reduct is assumed to be
equal to the carrier of its type.

Definition 2. Type U is a refinement of type T iff



Information Sources Registration at a Subject Mediator 75

– there exists a one-to-one correspondence Ops : OT ⇔ OU ;
– there exists an abstraction function Abs : VT → VU that maps each admissible

state of T into the respective state of U ;
– ∀x ∈ VT ∃y ∈ VU (Abs(x, y) ⇒ IT ∧ IU )
– for every operation o ∈ OT the operation Ops(o) = o′ ∈ OU is a refine-

ment of o. To establish an operation refinement it is required that operation
precondition pre(o) should imply the precondition pre(o′) and operation post-
condition post(o′) should imply postcondition post(o).

Based on the notions of reduct and type refinement, a measure of common
information between types in T can be established.

Definition 3. A common reduct for types T1, T2 is such reduct RT1 of T1 that
there exists a reduct RT2 of T2 such that RT2 is a refinement of RT1 . Further we
refer to RT2 as to a conjugate of the common reduct.

Definition 4. A most common reduct RMC(T1, T2) for types T1, T2 is a reduct
RT1 of T1 such that there exists a reduct RT2 of T2 that refines RT1 and there
can be no other reduct Ri

T1
such that RMC(T1, T2) is a reduct of Ri

T1
, Ri

T1
is not

equal to RMC(T1, T2) and there exists a reduct Ri
T2

of T2 that refines Ri
T1

.

Reducts provide for type specification decompositions thus creating a basis
for their further compositions. Type composition operations can be used to in-
fer new types from the existing ones. We introduce here definition of only one
operation - join. Let Ti(1 ≤ i ≤ n) ∈ T denotes types.

Definition 5. Type join operation. An operation T1 � T2 produces type T
as a ’join’ of specifications of the operand types. Generally T includes a merge
of specifications of T1 and T2. Common elements of specifications of T1 and T2
are included into the merge (resulting type) only once. The common elements
are determined by another merge - the merge of conjugates of two most common
reducts of types T1 and T2 : RMC(T1, T2) and RMC(T2, T1). The merge of two
conjugates includes union of sets of their operation specifications. If in the union
we get a pair of operations that are in a refinement order then only one of them,
the more refined one (belonging to the conjugate of the most common reduct) is
included into the merge. Invariants created in the resulting type are formed by
conjuncting invariants taken from the original types.

A type T is placed in the type hierarchy as an immediate subtype of the join
operand types and a direct supertype of all the common direct subtypes of the
join argument types.

Operations of the compositional calculus form a type lattice [10] on the basis
of a subtype relation (as a partial order).

3.2 Design Phase

Design is the component-based process of concretization of a specification ob-
tained on an analysis phase by an interoperable composition of pre-existing in-
formation components. It includes reconciliation of application domain (here,



76 D.O. Briukhov, L.A. Kalinichenko, and N.A. Skvortsov

federated schema) and of information source ontological contexts establishing
the ontological relevance of constituents of requirements and components speci-
fications, identification of component types (classes) and their fragments (identi-
fying most common reducts) suitable for the concretization of an analysis model
type (class) capturing its structural, extensional and behavioural properties,
composition (using type operations join and meet) of such fragments into speci-
fications concretizing the requirements, justification of a property of refinement
of requirements by such compositions.

4 Registration of Information Sources at a Subject
Mediator

4.1 General Schema of a Process of an Information Source
Registration at the Mediator

As a preliminary step, provide an ontological integration of an information source
specification with the federated level specification. The process of the ontological
integration is the same as for the compositional development method.

After the ontological integration, for each source class the following steps are
required:

1. relevant federated classes identification
Find federated classes that ontologically can be used for defining source
class extent in terms of federated classes. To a source class several federated
classes may correspond covering with their instance types different reducts of
an instance type of the source class. On another hand, several source classes
may correspond to one federated class.

2. most common reducts construction
For an instance type of each identified federated class do:
a) Construct most common reducts for instance type of this federated class

and source class instance type to concretize (partially) such federated in-
stance type. Most common reduct may include also additional attributes
corresponding to those federated type attributes that can be derived from
the source type instances to support them.

b) In this process for each attribute type of the common reduct a con-
cretizing type, concretizing function or their combination should be con-
structed (this step should be recursively applied).

3. partial source view construction
a) For each relevant federated class construct a partial source view express-

ing a constraints in terms of the federated class that should be satisfied
by values of respective most common reducts of source class instances.
Thus partial views over all relevant federated classes will be obtained.

4. partial views composition
a) Construct compositions of the source type most common reducts ob-

tained for instance types of all federated classes involved.



Information Sources Registration at a Subject Mediator 77

-name: string
-nationality: string
-date_of_birth: time
-date_of_death: time
-residence: Address

Person

-culture_race: string
-general_info: Text

Creator

-title: Text
-date: time
-narrative: Text

Entity

1

1

created_by

-place_of_origin: Address
-date_of_origin: time
-content: Text

Heritage_Entity

-dimensions: {sequence; type_of_element: integer}

Painting

-type_spicemen: Text
-archeology: Text

Antiquities

-name: string
-place: Address
-description: Text

Repository

-name: Text
-location: Address
-description: Text

Collection
1

*in_repository

collections

works

*1

*

1

contains

in_collection

Digital_Entity
digital_form

11

Fig. 1. Specifications of types of the federated schema

b) Construct a source view as a composition of partial views obtained above.
This is an expression of a materialized view of an information source in
terms of federated classes. An instance type of this view is determined
by the most common reducts composition constructed above.

4.2 Example of Subject Mediator and Information Source
Specifications

During the rest of the paper we demonstrate our approach on an example show-
ing the registration of the schema of the Uffizi museum Web site at a subject
mediator. Cultural heritage is taken as an application domain of the mediator.
For the federated and local source type schema we use UML diagrams and do
not provide canonical model specifications to save space.

Figure 1 shows a part of the federated schema of the mediator for the cultural
heritage domain.

Figure 2 shows a part of the schema of the Uffizi museum Web site. We apply
its description similar to one used in the Araneus project.

Text and Textual types define interfaces of different types used for textual
search (in Z39.50 and in Oracle respectively). Establishing of a refinement rela-
tionships for these type is beyond this paper.

4.3 Ontological Integration Example

Ontological integration is used to establishing ontological relevance of constitu-
ents of mediator’s federated schema and local source schema specifications. Spec-



78 D.O. Briukhov, L.A. Kalinichenko, and N.A. Skvortsov

-name: string

Repository

-name: string
-biography: Textual

Artist

-title: Textual
-painter: string
-culture: Textual
-date: time
-description: Textual

Canvas

-room_no: string
-room_name: Textual

Room

Image

{ordered}1

authors

{ordered}

1

contains

{ordered}1

paint_list

{ordered}

1 paint_list{ordered}

1

room_list

1

1 to_image

Fig. 2. Specifications of types of the Uffizi site schema

ifications of federated schema and specifications of local sources must be asso-
ciated with ontological contexts containing concepts of the respective subject
areas. Each element of specifications must be associated with an ontlogical con-
cept, describing the element. Elements (types, classes, attributes and others) are
defined as instances of semantically relevant ontological classes (concepts).

The ontological concepts have their verbal definitions and descriptor lists.
Verbal concept definitions are similar to definitions of words in an explanatory
dictionary. Descriptor lists included in the specifications of concepts are built
on the basis of the meaningful words lists in the concept’s verbal definition.
Concept descriptors are required for establishing relationships between concepts.
Hypernym/hyponym relationships and positive relationships (synonym) can be
defined between ontological concepts. These relationships can be treated as fuzzy
ones.

Relationships between concepts of different contexts are established by cal-
culating the correlation coefficients between concepts on the basis of their verbal
definitions. The correlation coefficients are calculated using the vector-space ap-
proach [16,3]:

sim(X, Y ) =
∑t

k=1(WXk · WY k)√∑t
k=1(WXk)2 · ∑t

k=1(WY k)2

The range of values of the simulating function sim(X, Y ) is the real interval
[0.0,1.0]. The concept X is considered positively related to the concept Y if
sim(X, Y ) is greater than a certain threshold value �; in this case, the intercon-
text positive relationship is established between X and Y , and the value of the
function is considered as the relationship strength.

Let’s consider the federated concept IconographicObject which associated
with the element Painting of federated schema and the local concept ArtWork
which associated with the element Canvas of local source schema. Specifications
of the concepts look as follows:

{IconographicObject;
in: concept;
supertype: ManMadeObject, ConceptualObject;



Information Sources Registration at a Subject Mediator 79

def: "This entity comprises objects which are designed primarily or in
addition to another functionality to represent or depict something in
an optical manner, be it concrete or abstract. This entity has a
certain pragmatic value in the fine arts since it conveniently groups
together objects such as paintings, drawings, watercolours and other
similar objects."

}

{ArtWork;
in: concept;
def: "Art such as sculpture, drawings or paintings depicting something"

}

The correlation coefficient of the similarity function is the following:

sim(IconographicObject, ArtWork) = 0.2491

Basing on this coefficient we establish the positive relationship between these
concepts. The correlation between the schema elements Painting and Canvas is
established with the same strength. Analogously hypernym/hyponym concept
relationships are established [3].

4.4 Most Common Reducts Construction

Construct most common reducts for the federated types Painting and Creator
and their ontologically relevant source type Canvas (Figs. 1, 2). On construction
of the most common reduct of types defined in the specification of requirements
(local source definition) and in a component (federated schema classes), various
conflicts between the specifications should be discovered and resolved. The re-
sult of the conflicts resolution is represented in a transformation of a conjugate
reduct into a concretizing reduct. The concretizing reduct specification includes
together with the attributes of a reduced type the mapping of a concretizing
reduct attributes into attributes of a common reduct and the conflict resolution
functions.

The most common reducts and their concretizing reducts are specified as
SYNTHESIS types. Specific metaslots and attributes are used to represent spe-
cific semantics. Specification of common reduct for Painting and Canvas denoted
as R Painting Canvas is defined as follows:

{R_Painting_Canvas;
in: reduct;
metaslot

of: Painting;
taking: {title, created_by, date_of_origin, narrative, digital_form,

in_collection};
c_reduct: CR_Painting_Canvas;

end;
}



80 D.O. Briukhov, L.A. Kalinichenko, and N.A. Skvortsov

A slot of refers to the reduced federated type. A list of attributes of the
reduced type in the slot taking contains names of its attributes that are to be
included into the common reduct.

A slot c reduct refers to the concretizing reduct based on a source type. We
add a concretizing reduct for the Painting, Canvas pair of types as the following
type definition:

{CR_Painting_Canvas;
in: c_reduct;
metaslot

of: Canvas;
taking: {title, painter, date, description, to_image};
reduct: R_Painting_Canvas

end;
simulating: {

R_Painting_Canvas.title ˜ CR_Painting_Canvas.title;
R_Painting_Canvas.created_by ˜ CR_Painting_Canvas.get_created_by;
R_Painting_Canvas.date_of_origin ˜ CR_Painting_Canvas.date;
R_Painting_Canvas.narrative ˜ CR_Painting_Canvas.description;
R_Painting_Canvas.digital_form ˜ CR_Painting_Canvas.to_image;
R_Painting_Canvas.in_collection ˜ CR_Painting_Canvas.get_in_collection

};
get_created_by: {in: function;

params: {+ext/CR_Painting_Canvas, -returns/Creator};
predicative: {ex c/Canvas ((c/CR_Painting_Canvas = ext) &

ex a/Artist ((c.painter=a.name) & returns=a/CR_Creator_Artist)))}
};
get_in_collection: {in: function;

params: {+ext/CR_Painting_Canvas, -returns/Collection}
predicative: {ex c/Canvas ((c/CR_Painting_Canvas = ext) &

ex r/Room ((in(c,r.paint_list) & returns=r/CR_Room_Collection)))}
}

}

A slot of refers to the source type. In this case a slot reduct refers to the
respective common reduct. The predicate simulating shows how the concretizing
state is mapped into the common reduct state.

E.g., R Painting Canvas.date of origin ∼ CR Painting Canvas.date defines
that attribute date of origin of reduct R Painting Canvas is refined by at-
tribute date of concretizing reduct CR Painting Canvas and values of attribute
date of origin are taken from values of attribute date. get created by presents the
mediating function resolving the conflict in mixed pre- and post-conditions.

The most common reduct and concretizing reduct for types Creator and
Canvas are constructed similarly.



Information Sources Registration at a Subject Mediator 81

4.5 Source View Construction

Now for each relevant federated class we construct a formula expressing a con-
straint in terms of the federated classes that should be satisfied by local class
instances.

The formula expressing the local class canvas is terms of the federated class
painting is defined as:

canvas(p/CR Painting Canvas) ⊆ painting(p/R Painting Canvas) &
p.in collection.in repository =′ Uffizi′

Specification of a class (actually, this is local as view class) containing this
formula is:

{v_canvas_painting;
in: class;
class_section: {

key: invariant, {unique; {title}};
lav: invariant, {subseteq (v_canvas_painting(p),

painting(p/R_Painting_Canvas) &
p.in_collection.in_repository = ’Uffizi’)}

};
instance_section: CR_Painting_Canvas

}

Now, another formula expressing the local class canvas is terms of the feder-
ated class creator is defined as:

canvas(c/CR Creator Canvas) ⊆ creator(c/R Creator Canvas) &
∃w/Painting(in(w, c.works) & w.in collection.in repository =′ Uffizi′)

Specification of a respective class v canvas creator denoting local source as
view is similar to the specification of class v canvas painting.

Now we apply type compositions and identify a useful part of Canvas type
as a composition of type reducts obtained before. We consider a concretiz-
ing reduct CR Painting Creator Canvas as the join of the concretizing reducts
CR Painting Canvas and CR Creator Canvas.

CR Painting Creator Canvas = CR Painting Canvas 
 CR Creator Canvas

A final formula for a local class canvas in terms of the federated classes
painting and creator is created as a conjunction of the partial constraints:

canvas(p/CR Painting Creator Canvas) ⊆
painting(p/R Painting Canvas) & p.in collection.in repository =′ Uffizi′ &
creator(c/R Creator Canvas) & ∃w/Painting(in(w, c.works) &
w.in collection.in repository =′ Uffizi′)

Complete definition of source view looks as follows:



82 D.O. Briukhov, L.A. Kalinichenko, and N.A. Skvortsov

{v_canvas;
in: class;
class_section: {

key: invariant, {unique; {title}};
lav: invariant, {subseteq(v_canvas,

painting(p/R_Painting_Canvas) &
p.in_collection.in_repository = ’Uffizi’ &
creator(c/R_Creator_Canvas) & ex w/Painting (in(w,c.works) &
w.in_collection.in_repository = ’Uffizi’)})

};
instance_section: CR_Painting_Creator_Canvas;

}

The last composition may be considered as a join composition of types defined
in class sections of partial views (that is, as a composition of types of classes
treated as objects).

5 Conclusion

The paper presents a method for heterogeneous information sources registration
at subject mediators. Source specifications as materialized views above virtual
classes of mediator are designed applying compositional development method
(source definition is treated as a specification of requirements and class defi-
nitions of federated schema are treated as component specifications). This ap-
proach is intended to cope with a dynamic, possibly incomplete set of sources.
Sources may change their exported schemas, become unavailable from time to
time. To disseminate the information sources, their providers should register
them at a respective subject mediator. Such registration can be done con-
currently and at any time. To make subject mediators scalable with respect
to a number of sources involved, specific methods and tools supporting pro-
cess of information sources registration are required. The method is applicable
to wide class of source specification models representable in hybrid semistruc-
tured/object canonical mediator model [11].

The registration tool is being developed reusing the SYNTHESIS composi-
tional design method prototype [2]. The tool is based on Oracle 8i and Java 2
under Windows environment.

References

1. R.-J. Back, J. von Wright. Refinement Calculus: A systematic Introduction.
Springer Verlag, 1998

2. D. O. Briukhov, L. A. Kalinichenko. Component-Based Information Systems Devel-
opment Tool Supporting the SYNTHESIS Design Method. In Proc. of the East Eu-
ropean Symposium on ”Advances in Databases and Information Systems”, Poland,
Springer, LNCS No.1475, 1998



Information Sources Registration at a Subject Mediator 83

3. D. O. Briukhov, S. S. Shumilov. Ontology Specification and Integration Facilities
in a Semantic Interoperation Framework, In Proc. of the International Workshop
ADBIS’95, Springer, 1995

4. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. Source Inte-
gration in Data Warehousing, In Proc. of the 9th Int. Workshop on Database and
Expert Systems Applications (DEXA-98), pages 192-197. IEEE Computer Society
Press, 1998

5. O. Duschka and M. Genesereth. Answering Queries Using Recursive Views. In
Principles Of Database Systems (PODS), 1997

6. M. Friedman, A. Levy, and T. Millstein. Navigational Plans for Data Integration,
1999

7. H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The Tsimmis Approach to Mediation: Data Models and Languages.
Journal of Intelligent Information System, 1997

8. M. Golfarelli, D. Maio, S. Rizzi. Conceptual Design of Data Warehouses from E/R
Schemes In Proc. of the 31st Hawaii International Conference on System Sciences,
Kona, Hawaii, 1998

9. B. Husemann, J. Lechtenborger, G. Vossen. Conceptual Data Warehouse Design.
In Proc. of the International Workshop on Design and Management of Data Ware-
houses (DMDW’2000), Stockholm, Sweden, June 5-6, 2000

10. L. A. Kalinichenko. Compositional Specification Calculus for Information Systems
Development. In Proc. of the East-West Symposium on Advances in Databases and
Information Systems (ADBIS’99), Maribor, Slovenia, September 1999, Springer
Verlag, LNCS, 1999

11. L. A. Kalinichenko. Integration of heterogeneous semistructured data models in the
canonical one. In Proc. of First Russian National Conference on ”Digital Libraries:
Advanced Methods and Technologies, Digital Collections”, Saint-Petersburg, Octo-
ber 1999

12. L. A. Kalinichenko. Method for data models integration in the common paradigm.
In Proc. of the First East European Workshop ’Advances in Databases and Infor-
mation Systems’, St. Petersburg, September 1997

13. L. A. Kalinichenko. SYNTHESIS: the language for desription, design and pro-
gramming of the heterogeneous interoperable information resource environment.
Institute for Problems of Informatics, Russian Academy of Sciences, Moscow, 1995

14. A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information
Sources using Source Descriptions. In Proc. of the 22nd Conf. on Very Large
Databases, pages 251-262, 1996

15. M. Lumpe. A Pi-Calculus Based Approach to Software Composition, Ph.D. the-
sis, University of Bern, Institute of Computer Science and Applied Mathematics,
January 1999

16. G. Salton, C. Buckley. Term-Weighting Approaches in Automatic Text Retrieval.
Readings in Information Retrieval, K. S. Jones and P. Willett, Kaufmann, 1997

17. A. Sheth and J. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Database. ACM Computing Surveys, 1990

18. V. S. Subrahmanian. Hermes: a Heterogeneous Reasoning and Mediator System.
http://www.cs.umd.edu//projects/hermes/publications/postscripts/tois.ps

19. N. Tryfona, F. Busborg, J. G. Borch Christiansen. starER: A Conceptual Model
for Data Warehouse Design, ACM Second International Workshop on Data Ware-
housing and OLAP (DOLAP), 1999

20. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 1992



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 84-97, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

Extracting Theme Melodies by Using a Graphical 
Clustering Algorithm for Content-Based Music 

Information Retrieval  

Yong-Kyoon Kang, Kyong-I Ku, and Yoo-Sung Kim 

Department of Computer Science & Engineering 
INHA University, INCHEON 402-751, Korea 

yskim@inha.ac.kr 

Abstract. We proposed the mechanism of extracting theme melodies from a 
song by using a graphical clustering algorithm. In the proposed mechanism, a 
song is split into the set of motifs each of which is the minimum meaningful 
unit. Then the system clusters the motifs into groups based on the similarity 
values calculated between all pairs of motifs so that each cluster has higher 
similarity values between them than others. From each clusters, the system se-
lects a theme melody based on the positions of the motif within a song and the 
maximum summation of similarity values of edges adjacent to the motif node in 
each cluster. As the experimental results, we showed an example in which we 
describe how the theme melodies of a song can be extracted by using the pro-
posed algorithm. 

1   Introduction 

As user’s requests for systematic management of multimedia information have been 
increased continuously, the content-based multimedia information retrieval is neces-
sary to satisfy user’s requirement. For music information, the traditional music re-
trieval mechanisms using the metadata of music have the major restriction; users 
should remember some appropriate metadata of a song to make the retrieval query. If 
users do not know the metadata of the song they want, they might not retrieve the 
song. This problem is caused by the general fact that people prefer to remember a part 
of song rather than its metadata. To solve the restriction of the traditional music re-
trieval mechanism using the metadata, the effective content-based music retrieval 
mechanism is needed. In content-based music retrieval system, users input some part 
of a song they remembering then the system retrieves songs that contain some varia-
tions of the given melodies.  

As the content-based music retrieval systems, several systems have been developed 
([1,2]). However, the previous systems have two major problems. First, these systems 
do not have indexing mechanism that is helpful to improve the retrieval performance. 



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          85 

 

Second these systems do not use the full primitive features that are essential to rep-
resent the semantics of music.  

To solve the first problem, previous researches([3,4,5]) have proposed theme mel-
ody index schemes in which the theme melodies extracted from a song are included. 
However, in [3], [4], and [5], theme melodies are represented by using only the 
pitches of notes within a melody. Furthermore, they consider the exactly repeated 
patterns within a music object as the theme melodies of the music. That is, the previ-
ous extracting mechanism can not extract the approximately(not exactly) repeated 
patterns as the theme melodies. In general, however, theme melodies can be repeated 
more than once with some variations within a song. Hence, an extraction mechanism 
that must deal with some variation of theme melody is highly required for the effec-
tive content-based music retrieval.  

In our previous research([6]), we proposed a similarity computation algorithm be-
tween music objects based on their contents, not only pitches but also dura-
tions(lengths) of notes. Also, in our another previous research([7]), we showed how 
the theme melodies can be used as the indexing terms for the efficient retrieval. How-
ever, we did not fully describe how the approximately repeated theme melodies are 
extracted from a song.  

In this paper, we proposed a theme melody extraction mechanism in which a modi-
fied version of the graphical clustering algorithm of [12] is used for grouping the ap-
proximately repeated motifs into a cluster. In the first step of the extraction mecha-
nism, we split a music file into the set of motifs each of which is the minimum mean-
ingful unit. Then the system extracts pitches and lengths of notes as the song's primi-
tive. Then the system calculates the similarity values between all pairs of motifs 
within a song based on the pitches and lengths of the corresponding notes between 
two motifs and clusters the motifs into groups based on the similarity values so that 
each cluster has higher similarity values between them than others. From each cluster, 
the system selects theme melody based on the positions of the motifs within a song 
and the maximum summation of the similarity values of the related motifs in each 
cluster. 

The rest of this paper is organized as follows. In Sect. 2, we briefly describe the 
fundamental features of music and the general definition of theme melody. We also 
discuss the previous related works on the extraction of theme melodies from a song. 
In Sect. 3, we introduce a theme melody extraction mechanism that uses the modified 
graphical clustering algorithm. Also, we describe how the theme melodies that are 
approximately repeated within a song can be effectively extracted from a song for the 
content-based music information retrievals. Section 4 concludes this paper with the 
description of future works.  



86         Y.-K. Kang, K.-I Ku, and Y.-S. Kim 

 

2   Related Works 

2.1 The Basic Concept of Theme Melody 

Music listeners get the semantics of music from the sequence of notes. The note that 
organizes music basically has four characteristics such as pitch, intensity, duration, and 
timbre. A music composed from the continuous notes has three characteristics: rhythm, 
melody, and harmony. Among the above characteristics of music, we adopt the melody 
as the primitive feature of music for supporting content-based music information re-
trieval because the melody can be a decisive component for representing music 
([6,7,8]). 

As we described above, music has a pattern of notes, i.e. melodies as the important 
component. A note alone can not be a pattern. As notes are added, the duration rela-
tionship between continuous notes is accomplished and finally a melody becomes 
clear. The pattern generally has a hierarchic structure that allows listeners to under-
stand the music ([9]).  

The motif is the minimum pattern that has some meaning by itself within a song. 
The theme is one of the important motifs that have the characteristic, ‘theme rein-
statement’ that means the theme must be repeated more than once with some vari-
ances within a song ([8,9]). According to the composer and the song, the degree of 
variances of the theme melodies varies. In general, music listeners remember the 
theme melodies of a song as the main meaning of the song.  

2.2  Previous Works on Theme Extraction from Music 

To improve the performance of the content-based music retrieval systems, index 
mechanisms that contain the representative parts, theme melodies, of music as the 
indexing terms have been proposed. For that, several researches ([3,11]) have pro-
posed the extraction mechanisms of theme melodies from music objects. Among 
them, in this section, we will discuss the mechanism proposed in [3] since this 
mechanism is considered as an advanced mechanism.  

In this mechanism, a melody is represented as the string of absolute pitches of 
notes in the melody. For a sub-string Y of a music feature string X, if Y appears 
more than once in X, we call Y a repeating pattern of X. The frequency of the 
repeating pattern Y, denoted as freq(Y), is the number of appearances of Y in X.  

Consider the melody string “do-re-mi-fa-do-re-mi-do-re-mi-fa”, this melody string 
has ten repeating patterns. However, the repeating pattern “re-mi-fa”, “mi-fa”, and 
“fa” are sub-strings of the repeating pattern “do-re-mi-fa” and freq(“do-re-mi-fa”) = 



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          87 

 

freq(“re-mi-fa”) = freq(“mi-fa”) = freq(“fa”) = 2. Similarly, the repeating patterns 
“do-re”, “re-mi”, “do”, “re”, and “mi” are sub-strings of the repeating pattern “do-re-
mi” and the freq(“do-re-mi”) = freq(“do-re”) = freq(“re-mi”) = freq(“do”) = freq(“re”) 
= freq(“mi”) = 3. Among the ten repeating patterns of the melody string, only “do-re-
mi-fa” and “do-re-mi” are considered as non-trivial. The non-trivial patterns in a song 
are considered as the theme melodies of the song.  

By using this mechanism, the exactly repeated longest patterns of a music ob-
ject are considered and extracted as the theme melodies of the music. In other 
words, the previous mechanism does not consider the approximately (not exactly) 
repeating pattern in extraction of theme melodies. In general, however, a theme 
melody can be approximately repeated more than once with some variations of 
pitches and lengths of notes in the melodies. Therefore, for effective content-
based music retrieval, we need a theme melody extraction mechanism that can 
deal with the some variation of theme melody during extracting theme melodies 
from music object.  

 

3   An Extraction Mechanism of Theme Melodies from Music 

3.1  The Procedure of Theme Melody Extraction Mechanism 

The procedure of the theme melody extraction mechanism proposed in this paper is 
shown in Fig. 1. When a music file is submitted, it is decomposed into the set of mo-
tifs each of which is the minimum meaningful unit. From motifs, pitches and lengths 
of notes are extracted. Then the mechanism computes the similarity values between 
all pairs of motifs of the song by using the similarity computation equation proposed 
in [6]. At next, the similarity matrix (or the similarity graph) is constructed. By using 
the proposed graphical clustering algorithm that is described in Sect. 3.2, the motifs of 
the song are clustered based on the similarity values between two motifs, of the simi-
larity matrix. Finally, a representative melody from each cluster is selected based on 
the locations of the melodies in the song and the maximum summation of the similar-
ity values concerned to the melody in a cluster. 



88         Y.-K. Kang, K.-I Ku, and Y.-S. Kim 

 

Submit  a  music  f i le

Decompose the  music  in to  the  se t  of  mot i fs

Extract  pi tches  and lenghts  of  notes  f rom moti fs

Compute the s imil iar i ty  values  between al l  pairs  of  moti fs

Construct  the  s imilar i ty  matr ix  (or  graph)

Cluster  the  motifs  by using the graphical  c luster ing algori thm

Select  the  theme melodies  f rom clus ters

Set  of  the theme melodies  of  the input  music  f i le
 

Fig. 1. The Procedure of Theme Melody Extraction Mechanism 

 
As an example, we consider a Korean children song of Fig. 2. The song is divided 
into 8 motifs. The motif is labeled with the circled number in Fig. 2.  

 

Fig. 2. The Score of a Korean Children Song “Nabi Nabi Hin-Nabi” 

 
The similarity values between all pairs of motifs are computed and the similarity ma-
trix is shown in Table 1. The entry (i, j) of i-th row and j-th column in the similarity 
matrix stands for the similarity value between i-th motif and j-th motif of the song. 
From the score of Fig. 2, since we can recognize that first and third and seventh mo-



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          89 

 

tifs are exactly same to each other, the entries (1, 3), (1, 7), and (3, 7) have 100 as the 
similarity values. Also since the similarity matrix is of triangular matrix, the entries 
(3, 1), (7, 1), and (7, 3) have 100 too. 

Table 1. The Similarity Matrix for “Nabi Nabi Hin-Nabi”  

Motifs 1 2 3 4 5 6 7 8 

1 100 85 100 82 86 62 100 82 

2 85 100 85 96 81 73 85 96 

3 100 85 100 82 86 62 100 82 

4 82 96 82 100 77 70 82 100 

5 86 81 86 77 100 68 86 77 

6 62 73 62 70 68 100 62 70 

7 100 85 100 82 86 62 100 82 

8 82 96 82 100 77 70 82 100 

3.2  A Graphical Clustering Algorithm  

To form a fragment in database design, [12] proposed a graphical clustering algorithm 
that subdivides the attributes of a relation into groups of the attributes based on the 
attribute affinity matrix, which is generated from the attribute co-relationships.  

Since theme melody extraction mechanism needs clustering algorithm that clusters 
motifs into groups of the motifs based on the similarity matrix doing like in the frag-
mentation in database design, with the slight modification, the graphical clustering 
algorithm proposed in [12] can be applied to the theme melody extraction problem.  

To describe the modified graphical clustering algorithm in detail, we first introduce 
the notations and terminologies that are used in [12].  

�� Capital letters or numbers denote nodes, i.e., motifs of a song. 
�� Lowercase letters or parenthesized two node numbers such like (1-2) denote edges 

between two nodes. 

�� P(e) denotes the similarity value of edge e between two motifs.  
�� Primitive cycle denotes any cycle in the similarity graph. 

�� Cluster cycle denotes a primitive cycle that contains a cycle node. In this paper, we 
assume that a cycle stands for a cluster cycle unless otherwise stated. 

�� Cycle completing edge denotes an edge that would complete a cycle. 
�� Cycle node is that node of the cycle completing edge, which was selected earlier. 



90         Y.-K. Kang, K.-I Ku, and Y.-S. Kim 

 

�� Former edge denotes an edge that was selected between the last cut and the cycle 
node. 

�� Cycle edge is any of the edges forming a cycle. 
�� Extension of a cycle refers to a cycle being extended by pivoting at the cycle node. 

Based on the above definition we discuss the mechanism of forming cycles from 
similarity graph. As an example with Fig. 3, suppose edges a and b were selected al-
ready and c is selected next. At this time, since selection of c forms a primitive cycle, 
(a, b, c), we have to check the possibility of a cycle, i.e., whether it is a cluster cycle. 
Possibility of a cycle results from the condition that no former edge exists, or 
P(former edge) � P(all the cycle edges). The primitive cycle (a, b, c) is a cluster cycle 
because it has no former edge. Therefore, the cluster cycle (a, b, c) is marked as a 
candidate cluster and node A becomes a cycle node.  

A

D

C

B

c

f

e
d

b

a

cycle  node

 

Fig. 3. Cycle Detection and Its Extension([12]) 

Let us explain how the extension of a cycle is performed. In Fig. 3, after determining 
A is a cycle node, suppose edge d is selected. Then, d should be checked the possibil-
ity of extension of the cycle, i.e., whether it is a potential edge for the extension of the 
cycle (a, b, c). Possibility of extension results from the condition of P(edge being con-
sidered or cycle completing edge) � P(any one of the cycle edges). Thus, the old cycle 
(a, b, c) can be extended to the new one (a, b, d, f) if the edge d under consideration or 
the cycle completing edge f satisfies the possibility of extension: P(d) or P(f) � mini-
mum of (P(a), P(b), P(c)). Now the process is continued: suppose edge e is selected 
next. But we know from the definition of the extension of a cycle that e cannot be 
considered as a potential extension because the primitive cycle (d, b, e) does not in-
clude the cycle node A. Hence it is discarded and the process is continued. 

We explain the relationship between a cluster cycle and a partition. There are two 
cases in partitioning. In both bases, after partitioning, the threshold is updated to this 
cutting value when this cutting value is greater than the saved threshold. 



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          91 

 

1. Creating a partition with a new edge. If a new edge (e.g. d in Fig. 3) by itself does 
not satisfy the possibility of extension, we continue to check an additional new 
edge called cycle completing edge (e.g. f in Fig. 3) for the possibility of extension. 
In Fig. 3, new edges d and f would potentially provide such a possibility of exten-
sion of the earlier cycle (a, b, c). If edges d and f meet the condition for the possi-
bility of extension above (i.e., P(d) or P(f) � minimum of (P(a), P(b), P(c)), then 
the extended new cycle contains edges a, b, d, f. If the condition is not satisfied, we 
produce a cut on edge d (called a cut edge) isolating the cycle (a, b, c) and this cy-
cle is considered a candidate cluster.  

2. Creating a partition with a former edge. After cutting in the previous case, if there 
is a former edge, then change the previous cycle node to that node where the cut 
edge is incident, and check for the possibility of extension of the cycle by the for-
mer edge. For example, in Fig. 4, suppose that a, b, and c form a cycle (a, b, c) 
with cycle node A, and that there is a cut on d, and that the former edge w exists. 
Then the cycle node is changed from A to C because the cut edge d originates from 
C. We are now evaluating the possibility of extension of the cycle (a, b, c) into one 
that contains the former edge w, i.e., the cycle (a, b, e, w). If w or e does not satisfy 
the possibility of extension, i.e., P(w) and P(e) < minimum of (P(a), P(b), P(c)), 
then the result is the following, w is declared as a cut edge, node C remains as the 
cycle node, and edges a, b, c becomes a partition. Otherwise, if the possibility of 
extension is satisfied, the result is the following, cycle (a, b, c) is extended to cycle 
(e, w, a, b), node C remains as the cycle node, and no partition can yet be formed.  

W

A

BC

D

w

e
c

b

a

d

n e w
cycle  node

cycle  node

 

Fig. 4. Partition ([12]) 

In post-processing, the meaningless clustering edges are eliminated from the candi-
date clusters by using the threshold value that is continuously updated during parti-
tioning describe above. Here, the meaningless clustering edge is an edge having 



92         Y.-K. Kang, K.-I Ku, and Y.-S. Kim 

 

smaller similarity value then the final threshold. After the post-processing, a cluster in 
which no meaningful edge exists removed from the set of clusters. 

After post-processing, the theme extraction mechanism selects a motif from each 
cluster as the representative of the cluster based on the locations of motifs and the 
similarity values in the cluster. In general, human is likely to remember the first motif 
of a song as a theme melody of the song. Hence, in our mechanism, from the cluster 
in which the first motif is included, we select the first motif as the representative of 
the cluster. Otherwise, i.e., from the cluster in which the first motif is not included, we 
select a motif that has the maximum summation of the similarity values of all adjacent 
edges to the motif node as the representative of the cluster.  

The modified graphical clustering algorithm that can be used for clustering motifs 
based on the similarity matrix is in Fig. 5. 

3.3  Experimentation of the Theme Melody Extraction Mechanism  

As an example for showing the effectiveness of the theme melody extraction mecha-
nism proposed in this paper, let’s consider the similarity matrix of Table 1 for a Ko-
rean children song of Fig. 2. Since the similarity matrix of Table 1 can be considered 
as the fully connected similarity graph as shown in Fig. 6a, in the following example 
we use the similarity graph of Fig. 6a instead of the similarity matrix of Table 1. Due 
to the space restriction, we do not present all similarity values in similarity graphs, 
however when we need the similarity value of an edge we present the value as the 
label on the edge. 

From the node numbered 1, the graphical clustering algorithm starts. Among the 
edges that are adjacent to node 1, the edge (1-3) between node 1 and 3 is selected 
since it has the maximum similarity value. Since selecting edge (1-3) does not satisfy 
the condition of step 3, i.e., it does not forms a primitive cycle, and the condition of 
step 4, i.e., there is not a candidate partition, step 2 of Algorithm 1 selects edge (3-7) 
as the next edge for the next iteration. Since edge (3-7) does not satisfy the conditions 
of step 3 and step 4 again, edge (7-1) is selected as the next edge based on the condi-
tions described at step 2. Since selecting edge (7-1) forms a primitive cycle (1-3, 3-7, 
7-1) (see Fig. 6b), i.e., satisfying the condition of step 3 of Algorithm 1, step 3 is exe-
cuted. Since there is no cycle node, the “possibility of a cycle” describe in Sect. 3.2 
should be checked. Since there is no former edge, the condition of the possibility of 
cycle becomes true and the primitive cycle is considered as the cluster cycle and also 
becomes a candidate partition. So, node 1 becomes the cycle node of the primitive 
cycle (1-3, 3-7, 7-1). Then, edge (7-5) is selected as the next considering edge for the 
next iteration since it is adjacent to node 7 and, at the same time, it has the maximum 
similarity value among the edges adjacent to node 7. Since the selection of edge (7-5) 



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          93 

 

satisfies the condition 4, i.e., edge (7-5) does not form a primitive cycle and a candi-
date cluster (1-3, 3-7, 7-1) exists and there is no former edge, the possibility of exten-
sion of the primitive cycle, i.e., whether edge (7-5) can enlarge the primitive cycle 
should be checked. Since edge (7-5) cannot enlarge the primitive cycle, the edge (7-5) 
is get cut and the primitive cycle becomes a candidate cluster and the threshold is set 
to 86 (notes that this cutting value is larger than the initial threshold 0). See Fig. 6d as 
the result of forming the first candidate cluster, (1-3, 3-7, 7-1) with the new threshold 
86. 

Fig. 5. The Modified Graphical Clustering Algorithm 

 

Algorithm 1: The Modified Graphical Clustering Algorithm 

Input: Similarity Matrix of n � n size or the fully connected similarity graph of n nodes 

Output: Set of clusters that has similar motifs 

Step 1. Start from the first node (row 1) with threshold = 0 

Step 2. Select an edge that satisfies the following conditions and, when all nodes are 
used this iteration will end and go to step 5: 

(1) If a cutting occurs in the previous iteration, starts from the next node adjacent 
to the cutting edge. 

(2) Otherwise, it should have the largest value among the possible choices of 
edges be linearly connected to the tree already constructed 

Step 3. When the next selected edge forms a primitive cycle: 

(1) If a cycle node does not exist, check for the "possibility of a cycle" and if the 
possibility exists, mark the cycle as a cluster cycle with the cycle node. Con-
sider this cycle as a candidate partition. Go to step 2 

(2) If a cycle node exists already, discard this edge and go to step 2 

Step 4. When the next selected edge will not form a cycle and a candidate partition ex-
ists: 

(1) If no former edge exists, check for the possibility of extension of the cycle by 
this new edge. If there is no possibility, cut this edge and consider the cycle 
as a partition. Cutting value becomes the new threshold when this cutting 
value is greater than the saved threshold. Go to step 2 

(2) If a former edge exists, change the cycle node and check for the possibility of 
extension of the cycle by the former edge. If there is no possibility, cut the 
former edge and consider the cycle as a partition. Cutting value becomes the 
new threshold when this cutting value is greater than the saved threshold. Go 
to step 2 

Step 5. Remove the meaningless edges that have smaller similarity values than the final 
threshold from the set of partitions. 



94         Y.-K. Kang, K.-I Ku, and Y.-S. Kim 

 

According to the step 2 of Algorithm 1, for the next iteration, edge (5-2) is selected 
in Fig. 6e since edge (5-2) has the maximum similarity value among the edges adja-
cent to the cut node 5. Then, edge (2-4) and (4-8) are selected in order since the selec-
tions of these edges do not satisfy the conditions of step 3 and step 4, respectively. 
However, when edge (8-2) is selected as the next edge by the step 2 as shown in 
Fig. 6f, the condition of step 3 is satisfied, i.e., edge (8-2) forms a primitive cycle (2-
4, 4-8, 8-2). Since there is no cycle node yet, the possibility of cycle is checked. Since 
there is a former edge (5-2) of the primitive cycle and P(former edge) � P(all the cycle 
edges), i.e., P(edge(5-2)) � the minimum of P(edge(2-4), P(edge(4-8), and P(edge 8-
2) is satisfied, the primitive cycle (2-4, 4-8, 8-2) becomes a cluster cycle and node 2 
becomes the cycle node of the cluster cycle(see Fig. 6g). And, as the next edge, edge 
(8-5) is selected. Since edge (8-5) does not for a cycle and there is a candidate parti-
tion, i.e., the condition of step 4 is satisfied and there is a former edge (5-2), change 
the cycle node from node 2 to node 8. the possibility of extension of the cycle by the 
former edge should be checked, whether the former edge has the larger similarity 
value than the cycle edges. In Fig. 6h, since the similarity value 81 of the former edge 
(5-2) is not larger than the similarity values 96, 100, 96 of the cycle edges (2-4), (4-8), 
and (8-2), respectively, edge (5-2) becomes a cut edge and the cluster cycle (2-4, 4-8, 
8-2) becomes a new candidate partition. However, the similarity value 81 of the cut 
edge is not greater than the saved threshold, the threshold is not updated, i.e., the 
threshold remains 86. Fig. 6i shows the second candidate partition formed. 

The remaining nodes 5 and 6 form a third candidate partition as shown in Fig. 6j. 
Hence, from the similarity graph of a Korean children song in Fig. 2, we can form 3 
candidate partitions finally as shown in Fig. 6k and the final threshold is 86.  

In post-processing describe in step 5 of Algorithm 1, the edge (5-6) is removed 
from the third candidate partition, since it has smaller similarity value than the final 
threshold. The third candidate partition (5, 6) is eliminated. As the final result, two 
candidate partitions (1, 3, 7) and (2, 4 8) are returned from Algorithm 1.  

From the final result of Algorithm 1, node 1 and 8 are selected as the representative 
melodies of the first candidate cluster (1, 3, 7) and the second candidate cluster (2, 4, 
8), respectively, since node 1 is the first motif of the song and the first motif give hu-
man more impression than others generally and the node 8 has greater summation of 
the similarities of adjacent edges to that than others. Hence, the first motif and the last 
motif are selected as the theme melodies of a Korean children song. From the score of 
the song in Fig. 2, we can recognize the first and last motifs have exactly and ap-
proximately repeated several times to give users the impressions as the main melodies 
of the song.  



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          95 

 

1 2

3

4

56

7

8

1 0 0

1 2

3

4

56

7

8

1 0 0

1 0 0

1 0 0

cyc le
n o d e

(a ) (b )
 

 
 

1 2

3

4

56

7

8

1 0 0

1 0 0

1 0 0

1 2

3

4

56

7

8

1 0 0

1 0 0

1 0 0

8 6

(c ) (d )
 

 
 

8 1

2

4

56

8

8 1

2

4

56

8

9 69 6

1 0 0

(e ) (f)  
 

Fig. 6. Forming Candidate Clusters from a Similarity Graph 

 



96         Y.-K. Kang, K.-I Ku, and Y.-S. Kim 

 

2

4

56

8

9 69 6

1 0 0

8 1

2

4

56

8

9 69 6

1 0 0

7 7

cyc le
n o d e

8 1

2

4

56

8

9 69 6

1 0 0

7 7

n ew
cyc le
n o d e

(g ) (h ) (i)  

56 68

1 2

3

47

8

56 68

1 2

3

47

8

(j) (k) (l)   

Fig. 6. Forming Candidate Clusters from a Similarity Graph (continued)  

4   Conclusions 

In this paper, we proposed a theme melody extraction mechanism in which a modified 
graphical clustering algorithm is used to cluster the motifs of a song into the set of 
similar melodies. In the first step of the extraction mechanism, we split a music file 
into the set of motifs each of which is the minimum meaningful unit. Then the system 
extracts pitch and duration information as the primitive features from the motifs. Then 
the system clusters the motifs into groups based on the similarity values calculated 
between all pairs of motifs based on the pitches and durations of notes of motifs such 
that each cluster has higher similarity values between them than others. For grouping 
motifs into set of clusters each of which includes similar motifs, we modified the 
graphical clustering algorithm proposed by [12] for database design. From the clus-
ters, the system selects a theme melody based on the locations of motifs within a song 
and the maximum summation of the similarity value of the motifs in each cluster. As 
the experimental results, we showed an example in which we describe how the theme 
melodies of a song can be extracted by using the proposed algorithm. 



 Extracting Theme Melodies by Using a Graphical Clustering Algorithm          97 

 

Acknowledgements. This work was supported by grant No. 2000-1-51200-009-2 
from the Basic Research Program of the Korea Science & Engineering Foundation. 

References 

1.  A. Ghias, J. Logan, D. Chamberlin and B.C. Smith, "Query By Humming Musical Informa-
tion Retrieval in an Audio Database," ACM Multimedia, 1995. 

2.  R. J. McNab, L.A. Smith, I. H. Witten, C. L. Henderson and S.J. Cunningham, “Towards 
the Digital Music Library: Tune Retrieval from Acoustic Input,” Digital Libraries, 1996. 

3.  Chih-Chin Liu, Jia-Lien Hsu, and Arbee L. P. Chen, “Efficient Theme and Non-trivial Re-
peating Pattern Discovering in Music Databases”, The Proceedings of the 15th International 
Conference on Data Engineering, 1999. 

4.  Ta-Chun Chou, Arbee L. P. Chen, and Chih-Chin Lie, “Music Databases: Indexing Tech-
niques and Implementation”, The Proceedings of IEEE International Workshop on Multi-
media Database Manangement Systems, 1996. 

5.  Jia-Lien Hsu, Chin-Chin Liu, and Arbee L. P. Chen, “Efficient Repeating Pattern Finding 
in Music Databases”, The Proc 

6.  Jong-Sik Mo, Chang-Ho Han, and Yoo-Sung Kim, “A Similarity Computation Algorithm 
for MIDI Musical Information”, The Proceedings of 1999 IEEE Knowledge and Data En-
gineering Exchange Workshop”, Chicago, USA, 1999. 

7. So-Young Kim and Yoo-Sung Kim, “An Indexing and Retrieval Mechanism Using 
Representative Melodies for Music Databases”, The Proceedings of 2000 International 
Conference on Information Society in the 21st Century, 2000. 

8.  Byeong-Wook Lee and Gi-Poong Park, “Everybody Can Compose Songs”, Jackeunwoori 
Pub. Co., 1989. 

9.  Leonard B. Meyer, Explaining Music: Essay and Explorations, Saeguang Pub. Co., 1990 
10. S. Wu and U. Mnaber, “Fast Text Searching Allowing Errors”, Communication of ACM, 

Vol. 35, No. 10, 1992. 
11. Arbee L. P. Chen, Jia-Lien Hsu, and C. C. Liu, “Efficient Repeating Pattern Finding in 

Music Databases”, The Proceedings of ACM Conference on Information and Knowledge 
Management, 1998.  

12. Shamkant B. Navathe and Minyoung Ra, “Vertical Partitioning for Database Desing: A 
Graphical Algorithm”, The Proceedings of ACM SIGMOD, 1989.  

 



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 98-111, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Multilingual Information System Based on
Knowledge Representation

Catherine Roussey, Sylvie Calabretto, and Jean-Marie Pinon

LISI, Bât 501, INSA de Lyon, 20 avenue Albert Einstein F 69621 VILLEURBANNE Cedex
{catherine.roussey,sylvie.calabretto,jean-marie.pinon}@lisi.insa-lyon.fr

Abstract. This paper presents a new model for multilingual document indexing
and information retrieval used in a documentary information system. Multilin-
gual system exploits multilingual document collection which documents are
written in different languages, though each individual document may contain
text in only one language. We have developed a multilingual information re-
trieval system based on knowledge representation model. In order to carry on
the implementation of our information retrieval system we chose an expressive
formalism containing relation properties: the Sowa Conceptual Graph (CG). In
this article, we define a new model of conceptual graph in order to enhance the
effectiveness of our matching retrieval function, and we present the architecture
of our multilingual information system which manages XML documents. Our
approach has been applied to a collection of mechanical documents in a scien-
tific library.

1 Introduction

This paper deals with a new approach for document indexing and retrieving in a mul-
tilingual information system. A documentary information system is a system manag-
ing and exploiting a document collection. By managing, we mean mainly all the op-
erations linked to the storage and retrieval of the documents by an user. More precise-
ly, a documentary information system performs different functions: the document
storage, the document indexing and retrieval, the visualization of docu-
ments (visualization of entire document, abstract of document, etc.), the document
edition, the navigation in the document collection and finally the management of
versions and variants. A “multilingual information system” is a documentary infor-
mation system exploiting multilingual document collection which documents are
written in different languages, though each individual document may contain text in
only one language. The paper focus on the indexing and information retrieval function
in a multilingual document collection. We present a multilingual information retrieval
system based on knowledge representation model. Following recent works, the se-
mantic of index must be enhanced, so the usual list of keywords is transformed to a
more complex indexing structure, where relations link keywords. Added semantic to
index implies to propose an adapted matching function. The logical Information Re-
trieval (IR) model seems to be the only model suitable for managing complex seman-
tic structures. Based on this model, several systems have been developed using differ-
ent formalisms and different interpretations. In order to carry on the implementation



A Multilingual Information System Based on Knowledge Representation         99

of our logical IR system we chose an expressive formalism containing relation prop-
erties: the Sowa Conceptual Graph (CG) [6]. Different systems have used this for-
malism to implement a logical IR system. Moreover, one notes that these systems
produce lot of silence that decrease the recall rate. In this article, we define a new
model of conceptual graph in order to enhance the effectiveness of our matching re-
trieval function.

First of all, we present the Conceptual Graph formalism. Follows a recent state of
the art about logical IR system based on CG. Afterwards, we introduce our model and
the corresponding algorithms. And finally, we present our prototype and its evalua-
tion.

2 Conceptual Graph Formalism

In 1986, van Rijsbergen [4] models the relevance of a document for query by a logical
uncertainty principle. That is to say given two logical formulas: d, which is the docu-
ment representation and q which is the query representation, a matching function
between d and q measures the uncertainty of d � q related to a given data set Ks.
Indeed, this function determines the minimal transformation necessary on a data set
Ks to establish the truth of the implication d � q. This approach improves the use of
knowledge in IR System because document descriptors can be more than terms. So
this model proposes a optimized matching function between document and query,
taking into account the semantic associated to document descriptors.
Different interpretations about this logical principle are possible due to the lack of
precision about the data set Ks [2]:
1. Ks can be general domain knowledge related to d and q . So we should evaluate the

Ks minimal transformation to obtain the implication d � q.
2. Ks can be fixed, d can be modified. So we should evaluate the minimal transfor-

mation d into d’ in order to obtain the implication d’ � q.
3. q can be changed. So we should evaluate the minimal transformation q into q’ in

order to obtain the implication d � q’.

In fact, Rijsbergen propose general model where any logic can be applied. Thus, any
formalism can be chosen, since it has a logical implication. Some recent works [1, 3]
use the formalism of Sowa Conceptual Graph to implement a logical IR system.

A conceptual graph is an oriented graph composed of concept nodes, conceptual
relation nodes (or relation node) and edges between concept and relation nodes. A
concept is labeled by a type and possibly a marker. Type corresponds to a semantic
class and marker is a particular instance of a semantic class. For instance, [MAN: *]
stands for the concept of all possible men. This concept is called a generic concept
also noted [MAN]. On the other hand, [MAN: Bill Clinton] stands for the concept of a
man named Bill Clinton. "*" and "Bill Clinton" are two examples of marker. A rela-
tion node is only labeled by a type. A specialization relation , noted �, classifies con-
cept types and relation types, which link a generic type to a more specific one. A
relation type has a fixed number of arguments called arity. Arity is the number of
concepts linked by this relation type. Each relation type has a signature that defines
the most generic concept type usable as an argument of the relation.



100         C. Roussey, S. Calabretto, and J.-M. Pinon

Specialization relations are useful to compare graphs by the Sowa projection op-
erator. This operator defines a specialization relation between graphs. As shown in
Fig. 1, there is a projection of a graph H in a graph G if there exists in G a copy of the
graph H where all nodes are specialization of H nodes.

InstrumentLubrification Lubrifiant
1 2

InstrumentLubrication Oil
1 2

Goal Development
12

Specialization
RelationH

G
Fig. 1. A projection example

Moreover, Sowa proposes a translation mechanism (the � operator) from CG into
first order logical formula. For each graph g, is associated a logical formula �(g). Sowa
has proven that there is a relation between the existence of a projection between two
graphs and the implication of their logical formulas. There is a projection of a graph q in
a graph d if the formula �(d) associated to d implies the formula �(q) associated to q:
�(d) � �(q). Therefore, conceptual graph formalism is used to implement logical
operational systems where the matching function is based one the projection operator.
For example, we could consider the previous graph H as a representation of a query and
the graph G corresponds to the index of document. There is a projection of H in G is
equivalent to �(G) � �(H) so the document is relevant for the query.

3 Related Works

Different logical Information Retrieval System, based on Conceptual Graph formal-
ism, has been developed, depending on the interpretation of the uncertainty logical
principle.

InstrumentLubrification Lubrifiant
1 2

InstrumentLubrication lubrifiant
1 2

Component Engine
12

graph d

graph q1

InstrumentLubrication Oil
1 2graph q2

Fig. 2. Graphs examples for queries and documents

1. Ounis and all [3] have experienced the first interpretation of Rijsbergen principle in
the RELIEF system. The set of domain knowledge Ks is transformed by using re-



A Multilingual Information System Based on Knowledge Representation         101

lational properties such as symmetry, transitivity, inversion etc…This relation
properties are all captured in Ks in order to refine the indexes and thus improve re-
trieval effectiveness. Another contribution of this work is to propose a fast match-
ing function during execution time, even if in graph theory a projection can not be
performed in polynomial time. Thanks to inverted file and acceleration tables, RE-
LIEF computes some pre-treatments during indexing time, so projections are per-
formed faster during retrieval.

2. David Genest [1] has noted that one of the drawbacks of the projection operator is
to increase the silence. One of the reasons is that matching function based on pro-
jection give boolean results. There is a projection from a query to a document or
there is not. Moreover documents which are judged relevant are only specialization
of the query. For example, considering Fig. 2 there doesn't exist a projection from
q1 or q2 into doc. However if q1 and q2 represent queries and doc represents a
document index, this document seems to be relevant for these queries. In order to
take in account such problems, David Genest proposes an implementation of the
second interpretation of uncertainty principle. He defines some transformations on
Conceptual Graph used as document index in order to find a projection from the
query graph to the index graph. These transformations include specialization or
generalization of node labels, node joints or node and edge additions. Moreover a
mechanism is proposed to order sequence of transformations. As a consequence,
the matching function based on projection become a ranking function and orders
relevant documents for a query.

3. The third interpretation of the uncertainty principle implies to transform query to
establish the implication d�q. Since the projection operator implies expensive
treatments, it doesn't seem operational to process it during retrieval, in real time.
Our proposition takes Ounis and Genest improvements into account, by proposing

a graph matching function optimized for the information retrieval needs. Now, we
present our graph formalism called semantic graph.

4 Semantic Graph Model

Ontology enables to define the graph vocabulary. To simplify the formalism, the
notion of markers is eliminated from the conceptual graph model, because in our case,
document index contain only generic notion.

An ontology O is a 3-tuple O = (T C , T R , � ) where:
� TC is a set of concept type partially ordered by the specialization relation noted � .
� TR is a set of binary relation types1 partially ordered by �.
� �, called signature, is a mapping which associates with any relation types the

greatest concept type of its arguments. In other words, for any tr � TR, the type of
the kth argument of tr should be more specific than the type of the kth argument of �
(tr).The ith argument of � (tr ) is noted �i (tr).

                                                          
1 In general, a type of relation can have any arity, but in this paper, relations are considered to

be only binary relations like case relations or thematic roles associated with verbs [7].



102         C. Roussey, S. Calabretto, and J.-M. Pinon

Afterwards, we present our model called semantic graph. Comparing to Conceptual
Graph, the accent is made upon relation between concepts. All concepts should be
linked to at least another concept to build an arch.

A semantic graph is a 4-tuple Gs = (C, A, �, �) where :
� C is a set of concept nodes contained in Gs.
� A � C 	 C is a set of arches contained in Gs. For each arch a= (c, c’) � A; the ith

concept node of a (also called argument of a) is noted ai: (a1 = c and a2 = c’ ). The
set of concept nodes (argument) belonging to one of the arches of A is noted Ai.

� �: C 
 TC , � is an application, which associated for each concept node, c � C, a
label �(c) � TC , �(c) is also called the type of c.

� �: R 
 TR , � is an application, which associated for each arch, a � A, a label �(a) �
TR . �(c) is also called the type of a.

A semantic graph checks some constraints :
1. For each a � A / a = (c, c’), �(a)=r , � (ai) � �i (r) so � (c) � �1 (r) and � (c’) � �2

(r).
2. All the nodes concepts belong to at least one arc, so C � A1 � A2

The pseudo projection operator is an extension of the projection operator of Sowa
Conceptual Graph. A pseudo projection defines morphism between graphs with less
constraint than the projection operator does. The existence of a pseudo projection of a
graph H in a graph G is equivalent to the fact that a part of the information repre-
sented by G is close to the information represented by H.

4.1 Pseudo Projection Operator:

A pseudo projection from a semantic graph H = (CH , AH , �H , �H ) to a semantic graph
G = (CG , AG , �G , �G ) is a pair of mapping �= (f,g), such as f: AH 
 AG , associates an
arch of H with an arch of G and g: CH 
 CG associates a concept node of H with a set
of concept nodes of G. � has the following properties:
1. Concept nodes can not be preserved.

For any concept nodes c, c’ � CH , it is possible that g(c) = g(c’).
Two concept nodes of H can have the same image by � (for example, a same node
of G).
For any concept nodes c � CH, it is possible that g(c) = {b, b’} such that b and b’ �
CG.

A concept node of H can have several images by � (two distinct concept nodes of
G).

2. Type of concept nodes can be restricted.
For any concept node c of CH, if there exists b � CG such that b � g(c) then �G (b)
� �H (c).
For any concept node belonging to the graph H, the type of its image per � is
more specific than its type.

3. Type of concept node can be increased.
For any concept node c of CH , if there exists b � CG such that b � g(c) then �H (c)
� �G (b).



A Multilingual Information System Based on Knowledge Representation         103

For any concept node belonging to the graph H, its type is more specific than the
type of its image per �.

4. Arches are preserved.
For any arch a = (c, c’) of AH there exists f(a)=(b, b’) an arch of AG such that b �
g(c) and b’ � g(c’).

5. Type of arch can be restricted.
For any arch label �H (a), f(�G (a)) � �H (a)
For any arch belonging to the graph H, the type of its image per � is more specific
than its type.

6. Type of arch can be increased.
For any arch label �H (a), �H (a) � f(�G (a))
For any arch belonging to the graph H, its type is more specific than the type of its
image per �.

Indeed, pseudo projection operator enables to see if all the information represented by
H are close to some information represented by G. Now we should define a mecha-
nism enabling to see if part of the information from H are close to some information
from G. At this point, the document doc of the Fig. 2 answers the query q1, but doc
still be not relevant to q2.

4.2 Partial Pseudo Projection Operator

There is a partial pseudo projection from H to G if there is H’, a subgraph of H such as
there exists a pseudo projection from H’ to G.

Let us point out that, the pseudo projection operator does not preserve the number
of concept nodes, because we focus on relation between concepts, so arches are more
important than concepts. Moreover we think that it is no need to preserve the whole
structure of a graph for IR purpose because semantic graph is equivalent is considered
to be equivalent to its set of arches where concepts are unique.

From specialization relation, similarity functions between types will be defined.
Consequently, evaluation of the similarity between two arches will be possible. Then,
an evaluation of the pseudo projection operator between graph will enable us to define
the function of similarity between two semantic graphs.

4.3 Similarity Function between Types

The specialization relation enables to define a similarity function between types,
noted sim. sim is an asymmetrical function and it returns a real value ranging from 0
to 1.

sim : TC 	 TC �TR 	 TR � [0..1]
sim is defined as follow:

� If two types are identical then the similarity function returns value 1.
� If a type t1 specializes another type t2 directly, i.e. there is not intermediate type be-

tween t1 and t2 in the type hierarchy, then the similarity function returns a constant
value, fixed arbitrarily, lower than 1 such as: sim(t2 , t1) = VS and sim(t1 , t2) = VG



104         C. Roussey, S. Calabretto, and J.-M. Pinon

� If a type t1 specializes another type t2 directly, i.e. there is an intermediate type t
between t1 and t2 in the type hierarchy then the similarity function between t1 and t2

is the product of the similarity functions between (t1, t) and (t, t2) that is to say :
sim(t2 , t1) = sim(t2 , t) 	 sim(t , t1) and sim(t1 , t2) = sim(t1 , t) 	 sim(t , t2) .

4.4 Similarity Function between Arches

The similarity function between types enables to define a similarity function between
two arches, noted SimA. SimA is a float function and it returns a value ranging from 0 to
1. This function is defined as follows:

aH is an arch such as aH = (cH , c’H) and �(aH ) = rH and aG is an arch such as aG = (cG ,
c’G) and �(aG ) = rG.

3

,,

),(

2

1
�
�

	
� i

iGiHGGHH

GHA

aasimaasim

aaSim




(1)

or

3

’,’,,
),( GHGHGH

GHA
ccsimccsimrrsim

aaSim
���� 		

�
(2)

Indeed, SimA compute the average of the similarity between each arch component.

4.5 Pseudo Projection Evaluation

Considering two semantic graphs, pseudo projection from one graph to the other one
is possible or not. Rather than a boolean result, a real value is preferred so a computa-
tion is proposed to evaluate the resemblance between two graphs.

If there is a pseudo projection � from a graph H = (CH , AH , �H , �H) to a graph G =
(CG , AG , �G , �G), then this pseudo projection is evaluated by a real function, noted val,
defined as follows.

H

Aa
A

A

afasim

val H

�
��

, (3)

val is the average of the similarity function between each arch of H and its image in G
by �.

4.6 Similarity Function between Graphs

The similarity function, noted simG, between a graph H = (CH , RH , UH , �H , �H) and a
graph G = (CG , RG , UG , �G , �G) is a real function returning values ranging from 0 to 1.



A Multilingual Information System Based on Knowledge Representation         105

SimG (H, G) = max(val()). (4)

Or

H

Aa
A

G A

aasimMAX

GHsim H

�
�

 

�

,

,

where  is a partial pseudo projection from H to G.

(5)

5 Indexing and Information Retrieval Algorithms

After introducing our model of semantic graph, we shall concentrate on the organiza-
tion of the indexes for faster retrieval. Our structure consists on an inverted file and
several acceleration tables (see Fig. 3). The inverted file groups in the same entry all
the documents indexed by an arch. This means that, given an arch, we can immedi-
ately locate the document indexed by that arch. This is the basis of the inverted file
construction.

The acceleration tables enables to store the component of the arches and the se-
mantic values between components. Indeed, The acceleration tables pre-compute all
the similarity values of possible query arches before interrogation. The construction
of the inverted file and the acceleration table is done off-line, as part of the indexing
procedure.

5.2 Indexing Algorithm

Doc is a document. GraphIndex is the semantic graph in-
dexing Doc. O is an ontology. FirstArgValue is the ac-
celeration table containing the first argument (node
concept) of arches. SecondArgValue is the acceleration
table containing the second argument (node concept) of
arches. RoleValue is the acceleration table containing
the label of arches (relation). InvertedFile is the in-
verted file including - in the same entry - all the
documents indexed by an arch.

For each arch ArcDoc of GraphIndex do

If NotFind(ArcDoc) then

TArg1 is the type of the first concept argu-
ment of ArcDoc, TArg2 is the type of the second concept
argument of ArcDoc, TRelation is the type of the label
of ArcDoc



106         C. Roussey, S. Calabretto, and J.-M. Pinon

For all TypeC related to TArg1 by the spe-
cialization relation in O do

WeightArg1 � SimC(TypeC, TArg1)

FirstArgValue. AddTuple(ArcDoc, TypeC,
WeightArg1)

EndFor

For all TypeC related to Targ2 by the spe-
cialization relation in O do

WeightArg2 � SimC(TypeC, TArg2)

SecondArgValue. AddTuple (ArcDoc, TypeC,
WeightArg2)

EndFor

For all TypeR related to TRelation by the
specialization relation in O do

WeightRel � SimR(TypeR, TRelation)

RoleValue.AddTuple(ArcDoc, TypeR,
WeightRel)

EndFor

EndIf

InvertedFile. AddTuple (ArcDoc, Doc)

NotFind(ArcDoc) is a boolean function, which returns
true if ArcDoc already exists in the Data Base.

An important part of the complexity of pseudo projection operator is done at indexing
time. Because for each indexing component, we find all components which can be
related to it (component can be specialized by or can specialize the indexing compo-
nent) and then we compute the similarity between them. This makes it easier to com-
pute the similarity between a query arch and an indexing arch.



A Multilingual Information System Based on Knowledge Representation         107

5.2 Retrieval Algorithm

By making use of the pre-computations that are comprised in the acceleration tables,
the retrieval function performs -in one operation- the evaluation of the pseudo projec-
tion between query graph and indexing graph.

GraphReq is a query graph and nbArc is the number of
arches in GraphReq. Threshold is a fixed threshold to
filter result documents. ListDocResult is a weighted
list of documents.

For each arch ArcReq of GraphReq do

ListArcIndex �FindRelatedArc(ArcReq)

For each (ArcIndex, WeightArc) of ListArcIndex
do

ListDoc � FindDocList(ArcIndex)

// For a query arch, the document weight is the maximum
of similarity values between the query arch and one of
its indexing arch

For each Doc of ListDoc do

If ListDocArc.Belong(Doc) Then

Weight �ListDocArc.FindWeight(Doc)

NewWeight � max(Weight, WeightArc)

ListDocArc.ReplaceWeight(Doc, NewWeight)

Else

ListDocArc.Add(Doc, WeightArc)

EndIf

EndFor

EndFor

//For a query graph, the document weight is the sum of
all the similarities values (WeightArc) between a query
arch and one of its indexing arch divided by the number
of query arches.



108         C. Roussey, S. Calabretto, and J.-M. Pinon

For each (Doc, WeightArc) of ListDocArc do

If ListDocResult.Belong(Doc) Then

Weight � ListDocResult.FindWeight(Doc)

NewWeight � Weight + (WeightArc / nbArc)

ListDocResult.ReplaceWeight( Doc, New-
Weight)

Else

ListDocResult.Add(Doc, WeightArc)

EndFor

EndFor

For each (Doc, WeightArc) of ListDocResult do

If WeightArc < Threshold Then

ListDocResult.Remove(Doc, WeightArc)

EndFor

FindRelatedArc(ArcReq) is a function, which returns a
list (ListArcIndex), of arches (ArcIndex) associated
with a similarity values (WeightArc).

In the retrieval algorithm, the partial pseudo projections are obtained in polynomial
time, as the most part of the algorithm consist in tables joint. Usually the cost of a
projection operator between graph is over estimated, as it is often link to graph theory
and want to find a morphism between indefinite structure. To over come this problem,
we have limited the graph structure. We consider that a graph is a set of arches and
that a concept node is unique in a semantic graph. Now we should evaluate if our
limitation can obtain could result during a retrieval process.

6 The SyDoM Prototype

Our multilingual retrieval system is called SyDoM (Multilingual Documentary Sys-
tem)[5]. The system is implemented in JAVA on top of the Microsoft Access Data-
base system. SyDoM is composed of three modules:
� The ontology module manages the documentary language with new vocabulary

and new domain entity. Documentary language is used for indexing and querying a
multilingual document collection.



A Multilingual Information System Based on Knowledge Representation         109

� The indexing module indexes and annotates XML documents with semantic graphs
using a set of metadata associated to the ontology.

� The retrieval module performs multilingual retrieval.
Actually the ontology can be displayed in different languages (French and English).
This system performs also manual indexing process for XML documents using a set
of metadata associated to the ontology. Our experimentation was done on English
articles dealing with mechanics called pre-print of the Society of Automotive Engi-
neers (SAE). The first step of the experiment is to build a domain ontology. Thanks to
a mechanical thesaurus, we managed to have 105 mechanical concepts stored in our
ontology. On top of that, we added 35 relations found in Sowa Knowledge Book [7].
During manual indexing only titles are taken in account. For our first experiments, we
have manually indexed approximately 50 articles and used 10 queries. The average
indexing graph consists of 4 arches and the average query graph consists of 2 arches.

The users introduce their queries through the query interface presented in Fig. 3.
This figure correspond to the French query "modèle de combustion" (combustion
model)

Fig. 3. SyDoM interface

When retrieval is started, the data introduced by the user are collected and an internal
representation of the query is produced. The results are ordered from the most rele-
vant document to the less pertinent one.

To evaluate our system, we compare it to the IR system used at the scientific li-
brary of our Institute, called Doc'INSA. In this system, documents and queries are
represented by a list of keywords. The matching function between documents and
queries evaluates the number of common keywords. The indices of this system were



110         C. Roussey, S. Calabretto, and J.-M. Pinon

generated automatically from the index graphs of SyDoM, to avoid to take the index
variability into account.

The next figure presents the performance of our system using different threshold
(0.8, 0.6, 0.5, 0.4, and 0). We compute the average precision for ten recall intervals.
The constant value of type similarity function are arbitrarily fixed (VG = 0.7 and VS =
0.9).

0

0,2

0,4

0,6

0,8

1

1,2

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

re ca ll

p
re

ci
si

o
n

0,8

0,6

0,5

0,4

0

Fig. 4.: SyDoM evaluation using different thresholds

The trend of the curve can be explained by the fact that our collection size is small.
Therefore, most part of the queries deals only with few documents. Because these
documents are retrieved with an important weight (more than 0.8), the precision is
good whatever the recall could be.

The next figure presents the comparison of SyDoM with the Doc’INSA system. We
can noticed that relations treatment and hierarchy inference improve significantly the
quality of the answer even for manual indexing.

0

0,2

0,4

0,6

0,8

1

1,2

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

re ca ll

p
re

ci
si

o
n

S y DoM

Doc ’INS A

Fig. 5. Evaluation of SyDoM (threshold = 0.6) and Doc’INSA system



A Multilingual Information System Based on Knowledge Representation         111

The next step would be to compare our system to RELIEF and David Genest One.
We aim to experiment if our model -comparing to the extension of CG proposed by
David Genest- could have similar results with less computational time. The main
challenge is that David and I deal with manual indexing process so it is not easy to
find human resources in order to carry on a real experiment.

7 Conclusion

In this paper, we proposed a prototype of a Multilingual Information System focusing
on the indexing and information retrieval modules. We have defined a new model of
conceptual graph in order to enhance the effectiveness of our retrieval system. We
have, indeed, integrated a new extension of CG proposed by Genest and a fast re-
trieval technique. We have already noticed that our proposal is operational and give
better results than traditional documentary system. This is very encouraging for a first
implementation. At this point, we need to carry on further experiments.

References

1. D. Genest. « Extension du modèle des graphes conceptuels pour la recherche d'informa-
tion ». PhD Thesis, Montpellier University, Montpellier, France 2000.

2. J.Y. Nie. « un modèle logique général pour les systemes de recherche d'informations. Ap-
plication au prototype RIME ». PhD Thesis, Joseph Fouriei University, Grenoble, France
1990.

3. I. Ounis, M. Pasça. « RELIEF: Combining expressiveness and rapidity into a single sys-
tem ». Proceeding of 18th SIGIR Conference, Melbourne, Australia, p 266-274, august
1998.

4. C.J. van Rijsbergen. « A new Theoritical Framework for Information Retrieval ». Proceed-
ing of the 9th SIGIR Conference, Pisa, p 194-200m septembre 1986.

5. C. Roussey, S. Calabretto, J. M. Pinon « Un modèle d'indexation pour une collection mul-
tilingue de documents». Proceeding of the 3rd CIDE Conference, Lyon, France, p 153-169,
July 2000

6. J. Sowa. « Conceptual Structures: information processing in mind and machine ». The
System Programming Series, Addison Wesley publishing Company, 1984.

7. J. Sowa. « Knowledge Representation: Logical, Philosophical, and Computational Founda-
tions ». Brooks Cole Publishing Co., Pacific Grove, CA., 2000.



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 112-126, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

Capturing Fuzziness and Uncertainty 
of Spatiotemporal Objects 

Dieter Pfoser and Nectaria Tryfona 

Computer Science Department, Aalborg University 
Fredrik Bajersvej 7E, DK-9220 Aalborg East, Denmark 

{pfoser,tryfona}@cs.auc.dk 

Abstract. For the majority of spatiotemporal applications, we assume that the 
modeled world is precise and bound. This simplification seems unnecessary 
crude for many environments handling spatial and temporal extents, such as 
navigational applications. In this work, we explore fuzziness and uncertainty, 
which we subsume under the term indeterminacy, in the spatiotemporal con-
text. We first show how the fundamental modeling concepts of spatial objects, 
attributes, relationships, time points, time periods, and events are influenced by 
indeterminacy, and then show how these concepts can be combined. Next, we 
focus on the change of spatial objects according to their geometry over time. 
We outline four scenarios, which identify discrete and continuous change, and 
we present how to model indeterminate change. We demonstrate the applicabil-
ity of this proposal by describing the uncertainty related to the movement of 
point objects, such as the recording of the whereabouts of taxis. 

1 Introduction 

Spatiotemporal applications received a lot of attention over the past years. Require-
ments analysis [15], models [4], data types [8], and data structures [14] are some of 
the main topics in this area. Although considerable research effort and valuable re-
sults do exist, all the studies and approaches are based on the assumption that, in the 
spatiotemporal mini-world, objects have crisp boundaries, relationships among them 
are precisely defined, and accurate measurements of positions lead to error-free rep-
resentations. 

However, reality is different. Very often boundaries do not strictly separate objects 
but, rather, show a transition between them. Consider the example from an environ-
mental system in which the different soil zones, such as desert and prairie, are not 
precisely bound. We encounter a transition, or fuzziness, between them. On the other 
hand, in navigational systems, the position of a moving vehicle, although precise in 
its nature, might not be exactly known, e.g., car A is in New York. We encounter 
uncertainty, i.e., lack of knowledge or error about its actual location.  

In this paper, we deal with fuzziness and uncertainty as related to spatiotemporal 
objects. More specifically, we start by pointing out the semantic differences between 
the two cases that constitute spatiotemporal indeterminacy: fuzziness, concerning 
“blurry” situations, and uncertainty, expressing the “not-exactly-known” reality. We 



Capturing Fuzziness and Uncertainty of Spatiotemporal Objects         113 

 

clarify these terms in the spatial and temporal domains, as well as the combined ef-
fect, i.e., spatiotemporal fuzziness and uncertainty. We show how the basic spatio-
temporal modeling concepts of spatial objects, attributes, relationships, time points, 
time periods, events, and change are influenced by indeterminacy. We provide formal 
ways to describe this, while an example demonstrates the applicability of this pro-
posal. A more elaborate discussion with the use of fuzzy set and probability theory in 
this area can be found in [16]. 

There are only few works towards spatiotemporal indeterminacy. [18] focuses on 
simple, abstract, spatial and temporal uncertainty concepts and integrates them to 
describe spatial updates in a GIS database. [13] discusses spatiotemporal indetermi-
nacy for moving objects data. It is, however, limited to point objects and it does not 
take temporal errors into account. [2] aims at describing the change of fuzzy features 
over time using a raster representation. More work exists towards temporal, e.g., [5] 
and spatial indeterminacy, e.g., [1], [3], [7], [17], [19], [20].  

The rest of the paper is organized as follows. Section 2 briefly presents the funda-
mental spatial and temporal concepts involved in the spatiotemporal application do-
main. Section 3 explores the semantics and gives the mathematical expression of 
indeterminate temporal concepts. Section 4 deals with indeterminate spatial concepts. 
Section 5 discusses change as the spatiotemporal concept affected by indeterminacy. 
Finally, Sect. 6 concludes with the future research plans.  

2  Spatial and Temporal Concepts  

To understand spatiotemporal indeterminacy, it is important to realize the fundamen-
tal spatial, temporal, and spatiotemporal concepts.  

Spatiotemporal applications can be categorized based on the type of data they 
manage: (a) applications dealing with moving objects, such as navigational, e.g., a 
moving “car” on a road network, (b) applications involving objects located in space, 
whose characteristics and their position, may change in time, e.g., in a cadastral in-
formation system, “landparcels” change positions by changing shape, but they do not 
“move,” and (c) applications integrating the above two behaviors, e.g, in environ-
mental applications, “pollution” is measured as a moving phenomenon which changes 
properties and shape over time. The following modeling concepts are involved in 
environments like the aforementioned.  
�� Spatial Objects and their geometry. Spatial objects are objects whose position in 
space matters, e.g., a moving “car.” Many times, not only the actual object’s position 
matters, but its geometry does as well. For example, in a cadastral system the exact 
geometry of a “landparcel” is of importance. The geometry of the position of a spatial 
object can be (of type) point, line, region or any combination thereof [10]. 
�� Spatial Relationships. Spatial relationships relate spatial objects, or more precisely, 
the positions of the objects, e.g., two landparcels share common borders.  
�� Spatial Attributes and their geometry. Spatial objects have, apart from descriptive 
attributes, also spatial attributes, e.g., the “vegetation” of a “landparcel.” Values of 
spatial attributes depend on the referenced position and not on the object itself.  





Capturing Fuzziness and Uncertainty of Spatiotemporal Objects         115 

 

where [ ]P x i�  is the probability that the time point is located during chronon i. In 
our example, assuming uniform distribution, 2[ 6] 0.25P I � � , the probability outside 
the range lower support–upper support is 0. Also, all indeterminate time points are 
considered to be independent, i.e.,  

 [ ] [ ] [ ]P x i y j P x i P y j� � � � � � �  (2) 

We can state that all probability distributions are fuzzy sets [16]. By using the prob-
ability mass function as basis we obtain the following membership function 

 ( ) ( )x xi p i� ��  (3) 

where � is an arbitrary scale factor relating the membership grade to the probability. 

3.2    Indeterminate Time Periods 

A time period is a subset of the time line bound by two time points. Depending on 
whether the bounding points are determinate or indeterminate, we term the time pe-
riod accordingly. In Fig. 2b, I1 and I2 denote the indeterminate start and end point of 
the period. Possible periods can range from chronon 1 to chronon 8 (max), but at least 
have to range from 3 to 6 (min). 

The time period presented in Fig. 1b can also be perceived as having a fuzzy 
boundary. Next, we derive a membership function, ( )T

x� , returning the degree to 
which an arbitrary chronon x is part of the time period T. From Fig. 1b, we can de-
duce that chronons 4 and 5 are definitely part of the time period T, whereas other 
chronons might be. Assuming a uniform distribution of the chronons within the time 
points I1 and I2, we can see that if chronon 2 is within the period so has to be chronon 
3. Further, if chronon 1 is within, so have to be chronons 2 and 3. The same is true for 
chronons 6, 7, and 8 of I2. Thus, in three cases chronon 3, in two cases chronon 2, and 
in one case chronon 1 is within period T. The probability mass function of I1 and I2 as 
shown in Fig. 1b gives the probability for a chronon to be in T. In summing up the 
probability from “the outside to the inside,” we obtain a step function, the probability 
density function. 

To derive the membership function, ( )T
x� , we have to split the time period T into 

three parts; (1) the “core” (chronons 4 and 5), (2) the intervals I1 and I2 , and (3) the 
outside world. A membership grade of 1 and 0 indicate definite and no membership 

chronons 

 1      2      3      4      5      6      7      8 

I 1 2 I 

 chronons 

 1      2      3     4     5     6      7      8 

I 1 I 2 

max 
min 

 
(a) (b) 

Fig. 1. (a) Determinate (I1) and indeterminate (I2) time points, (b) indeterminate time period, 
probabilities of bounding time points (solid line-probability density function, dashed line-
probability mass function) 

 



116         D. Pfoser and N. Tryfona 
 

 

in the time period, respectively. All chronons in the core have a grade of 1. The grade 
of the chronons in the intervals is equal to the value of the probability density func-
tion. Formula 4 summarizes the membership function. 

 
21

   1        in core
( ) ( )

   0       otherwise
T

y
x p x y I I� � �  (4) 

4    Spatial Indeterminacy 

In the spatial indeterminacy area, [9] states that fuzziness is a property of a geo-
graphic entity. Fuzziness concerns objects that cannot be precisely defined otherwise 
[6]. On the other hand, uncertainty results from limitations of the observation, i.e., the 
measurement process [9]. 

4.1    Indeterminate Spatial Objects, Relationships, and Attributes 

In the following, we point out the differences between spatial fuzziness and spatial 
uncertainty more prominently. Consider the example of the different soil zones, e.g., 
desert and prairie. Each zone is not precisely bound, but, rather, a blurry situation 
exists around their common boundaries. We can identify a location for which we are 
sure it is within the desert or the prairie, and we can find a location that is in-between. 
Consequently, the boundary between the two soil zones is fuzzy. However, for a forest 
divided into separate landparcels, we can clearly say what tree belongs to what land-
parcel. The boundaries between the land parcels are crisp and thus certain.  

In contrast, let us consider the position of a moving vehicle whose location is not 
exactly known, e.g., a car is in New York. This example is characterized by a lack of 
knowledge about the car’s location. The fact that the car is somewhere is precise. 
However, the lack of knowledge we have about its position introduces uncertainty. 
Without further knowledge, we can only give the probable area the car is in. 

These examples indicate that the distinguishing element between fuzzy and non-
fuzzy facts is a crisp boundary, i.e., when we cannot clearly say what belongs to 
what. The concept of boundary introduces the interior/exterior notion, i.e., what is 
within the boundary and what is outside. Spatial fuzziness occurs (a) in the relation-
ships among spatial objects and (b) in spatial attributes.  

On the other hand, the distinguishing element between uncertain and certain facts 
is the lack of, or the error in our knowledge, i.e., not sufficient knowledge about an 
otherwise precise fact. As a result, spatial uncertainty can refer to the degree of 
knowledge we have about an object’s position. Uncertainty about an object's position 
leads to uncertainty about the spatial relationship among this object and its neighbors, 
e.g., if the exact boundary of a land parcel is not known, then, the exact relationships 
with its neighboring land parcels are not known either. Furthermore, uncertainty can 
exist for spatial attributes, when knowledge about them is limited.  







Capturing Fuzziness and Uncertainty of Spatiotemporal Objects         119 

 

Above, the assumption is that the transition between the soil zones is linear. How-
ever, the effect of other transitions on the membership function would change the 
formula describing the membership grade for positions outside the core.  

5    Spatiotemporal Indeterminacy 

After showing the nature of spatial and temporal indeterminacy as well as the way to 
model it, we describe the combined phenomenon, spatiotemporal indeterminacy. 
Consider the example of a moving vehicle, it is reasonable to assume that its extent 
does not matter in a given application, and, thus, can be reduced to point. To record 
its movement, we sample the object’s position. We cannot answer queries about an 
object’s movement at times in-between position samples unless we interpolate the 
positions, e.g., linear interpolation. 

For areal objects, the change of position includes the change of their centroid and 
shape, which has to be interpolated as well. Consider the indeterminate region exam-
ple of an island. Tides have (a) a short-term effect on its coastline, whereas (b) over a 
longer period of time a general drift can be observed as well. If one is only interested 
in the general drift, the tidal effect can be modeled as a fuzzy boundary that changes 
over time.  

5.1    Spatiotemporal Scenarios and Indeterminate Change 

Change, or evolution, is the most important concept in the spatiotemporal context, 
and will in the following serve as the basis to evaluate spatiotemporal indeterminacy. 
As stated in literature [4], [8], [15], change (a) can either occur on a discrete or on a 
continuous basis and (b) can be recorded in time points or in time periods.  

Table 1 illustrates the four change scenarios encountered in the spatiotemporal 
context by using a 3-dimensional representation of the temporal change of geometry. 
Space (x- and y-coordinates in the horizontal plane) and time (time-coordinate in the 
vertical direction) are combined to form a three dimensional coordinate system. In the 
change scenarios, the elements that can be indeterminate (with respect to an object) 
are geometry, time point, and time interval. We use a point geometry to keep the illus-
trations simple. However, the same change scenarios apply to other geometries. A 
discrete change of geometry from iG  to 1iG �  is indicated by using an arrow in the 
spatial plane as opposed to a line in case of a continuous change. In the following, we 
examine each scenario with respect to indeterminacy. 

The first case, Scenario 1 in Table 1, is the discrete change of a geometry recorded 
in time points. Geometry stays constant for some time and then changes instantly. It is 
sampled at constant time intervals dt. The geometry and/or the time point can be 
indeterminate.  

The second case, Scenario 2 in Table 1, is the continuous change of a geometry re-
corded in time points. We sample a constantly changing geometry at time intervals dt. 
Knowing a geometry only at time points has two implications, (i) recording geome-
tries at points means assessing a momentary situation without inferring anything 
about the geometry prior or past the time point. Consequently, (ii) time and space are 



120         D. Pfoser and N. Tryfona 
 

 

independent; not knowing the exact extent of the geometry does not affect the time 
interval and vice versa.  

In contrast, Scenarios 3 and 4 in Table 2, suggest that a change function of the 
form :  x xC t G�  exists that determines a geometry xG for a time point xt  in an 
interval spatially bound by the two geometries iG and 1iG �  and temporally bound by 
the time interval 1[ , ]i i iT t t �� . The change function C can be different for every time 
interval.  

The third case, Scenario 3 in Table 1, is the discrete change of a geometry re-
corded in time intervals. The objective is to “begin” a new interval when a spatial 
change occurs, i.e., new time intervals start at the time points t0 through t4. The geome-
try is constant within a time interval. Spatial and temporal indeterminacy affect each 
other. Dealing with indeterminate spatial extents, e.g., uncertainty induced by meas-
urement errors, implies that the time point at which a change occurs cannot be de-
tected precisely. On the other hand, having an indeterminate temporal event, e.g., 
clock errors, introduces spatial indeterminacy. 

The last and most complex case, Scenario 4 in Table 1, is the continuous change 
of a geometry recorded in time intervals. This case is based on the fact that for a 

Table 1. Four spatiotemporal change scenarios 

Change 
Time 

Discrete Continuous 

Point 

1) Geometry is recorded at a time point. 
It may or may not differ from the previ-
ously recorded one. We do not know 
when the change occurred. 

2) Geometry is sampled at time points. 
In between time points we have no 
knowledge about the geometry. 

 
  

Period 

3) Geometry is valid for a given time 
period. After a change, a new time pe-
riod starts. 

4) Geometry is sampled at time points, 
the starting and end points of the time 
period. A time period is assigned a 
“change” function that models the 
positional change within the period. 

 
  



Capturing Fuzziness and Uncertainty of Spatiotemporal Objects         121 

 

given time interval 1[ , ]i i iT t t �� , there exists a change function that models the trans-
formation from geometry iG to 1iG � . Each of these factors, i.e., (i) the time interval, 
(ii) the geometry, and (iii) the change function, can be subject to indeterminacy. 

In the simplest case, the geometry iG and 1iG �  and the time interval iT  are deter-
minate, and the change function returns a determine geometry xG  for a given time 
point x it T� . Here, we assume that the change function returns the geometry coincid-
ing with the actual movement. Is this not the case, the change function interpolates in 
between the geometries iG to 1iG �  and returns an indeterminate geometry. An exam-
ple is to use linear interpolation, i.e., the two geometries iG to 1iG �  are considered to 
be the endpoints of a line. Section 5.2 gives an elaborate example of a change func-
tion for this case. 

If we further allow iG and 1iG �  to be indeterminate, our change function would in 
any case return an indeterminate xG . In the following, we use the “~” symbol on top 
of the parameter to denote indeterminacy. This means that if a geometry is described 
by a probability or membership function, this very function is subject to change in the 
time interval iT .  

Following the idea from before, we would have a change function that returns a 
probability or membership function for a given xt  (cf. Table 2(a)). However, by inte-
grating the temporal component, we obtain a spatiotemporal probability or member-
ship function, i.e., a function that changes with time (cf. Table 2(b)). 

Until now, we always considered time to be determinate. We use time points to de-
termine the start and the end of the current time interval iT , and to denote the time 
point in question, xt . In case it  and 1it �  are indeterminate, we cannot state the begin-
ning and the end of the time interval precisely. Thus, the association of a geometry 
(indeterminate or not) to a time point becomes indeterminate. However, this affects 
mainly the change function and can be considered in adapting its form. In considering 
an indeterminate time interval, we cannot, for any time point in the time interval, give 

Table 2. Change scenarios without temporal indeterminacy 

Geometry (Gi, Gi+1) Time (ti, ti+1) Change 

Determinate Determinate 
:

x x
C t G� , where 

x
G , depending on the change 

function, is determinate or indeterminate (
x

G� ) 

Indeterminate Determinate 

(a) :
x xC t G� � , where 

xG�  represents a prob-
ability, ( )

xP i , or a membership function, ( )
x i�  

(b) ( , )
x i t� or ( , )

xP i t  

Table 3. Change scenarios incorporating temporal indeterminacy 

Geometry (Gi, Gi+1) Time (ti, ti+1) Change 

Determinate Indeterminate :
x xC t G� �
�  

Indeterminate Indeterminate 

(c) :
x xC t G� �
� , where 

xG�  is either a prob-
ability, ( )

xP i , or a membership function, ( )
x i�  

(d) ( , )
x i t� � or ( , )

xP i t�  



122         D. Pfoser and N. Tryfona 
 

 

a geometry as it would be unaffected by determinate time, but the indeterminate time 
contributes some additional indeterminacy. Table 3 adapts the approach shown in 
Table 2 to cover this case. 

The central element of spatiotemporal indeterminacy is the change function ma-
nipulating geometries. This function can be seen similar to a morphing algorithm 
between different instances of geometries, i.e., point, line, or region. Next, we give an 
example illustrating the aforementioned concepts. 

5.2 An Example of Use – Tracking Vehicles 

Consider the application scenario in which we track the continuous movement of 
taxis equipped with GPS devices that transmit their positions to a central computer 
using either radio communication links or cellular phones.  

Acquiring Movement – Sampling Moving Objects. To record the movement of an 
object, we would have to know the position on a continuous basis. However, 
practically we can only sample an object’s position, i.e., obtaining the position at 
discrete instances of time such as every few seconds.  

The solid line in Fig. 3a represents the movement of a point object. Space (x- and 
y-axes) and time (t-axis) are combined to form one coordinate system. The dashed 
line shows the projection of the movement onto two-dimensional space (x and y co-
ordinates). A first approach to represent the movements of objects would be to store 
the position samples and interpolate the in-between positions. The simplest approach 
is to use linear interpolation. The sampled positions become the end points of line 
segments of polylines. The movement of an object is represented by an entire polyline 
in three-dimensional space. In geometrical terms, the movement of an object is 
termed a trajectory (we will use “movement” and “trajectory” interchangeably). 
Fig. 3b shows a spatiotemporal space (the cube in solid lines) and several trajectories 
(the solid lines). The top of the cube represents the time of the most recent position 
sample. The wavy-dotted lines symbolize the growth of the cube with time. 

  
(a) (b) 

Fig. 3. Movements and space 



Capturing Fuzziness and Uncertainty of Spatiotemporal Objects         123 

 

Measurement Error. An error can be introduced by inaccurate measurements. Using 
GPS measurements in sampling, the error can be described by a probability function, 
in our case, a bivariate normal distribution P1. 

 

2 2

22
1 2

1
( , )  

2

x y

P x y e �

��

�
�

�  (9) 

where � is the standard deviation. For details on this error measure refer to [13]. 

Which Scenario? In Table 1 of Sect. 5.1, the sampling approach to assess the move-
ment of objects is characterized by scenario 4. Tables 2 and 3 establish a foundation 
for giving a change function in between sampled position. Table 3 gives function 
templates in case the times of sampling are not known precisely. However, GPS al-
lows for precise timing and, thus, we neglect the effects of time. In Table 2, Scenario 
1 (determinate geometry) gives a function template in case the sampled positions are 
known precisely. GPS measurements are accurate but not precise. Scenario 2 (inde-
terminate geometry) seems to be a match for our problem. Next we show how to 
establish a change function to determine the position of the moving object in-between 
sampling. We initially assume precise position samples. 

Sampling Uncertainty. Capturing the position using a GPS receiver at regular time 
intervals introduces uncertainty about the position of the object for the in-between the 
measurements. In this section, we give a model for the uncertainty introduced by the 
sampling, based on the sampling rate and the maximum speed of the object. 

The uncertainty of the representation of an object’s movement is affected by the 
sampling rate. This, in turn, may be set by considering the speed of the object and the 
desired maximum distance between consecutive samples. Let us consider the example 
of recording taxi movements. As a requirement, the distance between two consecutive 
samples should be maximally 10m. Given the maximum speed of a taxi as 150km/h, 
we would need to sample the position at least 4.2 times per second. If a taxi moves 
slower than its maximum speed, the distance between samples is less than 10m.  

Since we did not have positional measures for the in-between position samples (cf. 
Fig. 4a, the object could be anywhere in between position samples), the best is to limit 
the possibilities of where the moving object could have been. Considering the trajec-
tory in a time interval [t1, t2], delimited by consecutive samples, we know two posi-
tions, P1 and P2, as well as the object’s maximum speed, vm (cf. Fig. 4b). If the object 
moves at maximum speed vm from P1 and its trajectory is a straight line, its position at 
time tx will be on a circle of radius 1 1( )m xr v t t� �  around P1 (the smaller dotted circle 
in Fig. 4b). Thus, the points on the circle represent the maximum distance of the ob-
ject from P1 at time tx. If the object’s speed is lower than vm, or its trajectory is not a 
straight line, the object’s position at time tx will be somewhere within the area bound 
by the circle of radius r1.  

Similar assumptions can be made on the position of the moving object with respect 
to P2 and t2 to obtain a second circle of radius r2. The constraints on the position of the 
moving object mean that the object can be anywhere within the intersection of the 
two circular areas at time tx. This intersection is shown by the shaded area in Fig. 4b. 
We use the term lens for this area of intersection. We assume a uniform distribution 



124         D. Pfoser and N. Tryfona 
 

 

for the position within the lens, i.e., the object is equally likely anywhere within this 
lens shape.  

The sampling error at time tx for a particular position can be described by the prob-
ability function of Equation 10, where r1 and r2 are the two radii described above, s is 
the distance between the measured positions P1 and P2, and A denotes the area of the 
intersection of the two circles. 

 � 2 2 2 2 2 2

1 2
2

 1/ for ( )( , )
0 otherwise 

A x y r x s y rP x y � � � � � ��  (10) 

To eliminate the radii in favor of the max speed and times, we can substitute 

1( )m xv t t�  and 2( )m xv t t�  for the r1 and r2, respectively. This function describes the 
position of the moving object in between position samples. Thus, this function is an 
instance of the function template as described in Scenario 1 of Table 2. 

Combining Error Sources – a Global Change Function. Table 2 gives a template 
of a change function that incorporates indeterminate positions. Using our example, 
this translates to adapting Equation 10 such that the values for x and y are not precise 
but affected by the measurement error. A mathematical framework suitable for this 
problem is Kalman filtering [11], which combines various error prone measurements 
about the same fact into a single measurement resulting in a smaller error. This 
mathematical framework stipulates a method to combine uncertainty to reduce the 
overall error. Examples of applying Kalman filtering to the domain of vehicle naviga-
tion are the integration of three independent positioning systems such as dead reckon-
ing, map matching, and GPS, to determine the precise position of vehicles [12]. 

6   Conclusions and Future Work 

The work presented in this paper concerns the spatial, temporal, and spatiotemporal 
indeterminacy, i.e., fuzzy and uncertain phenomena. We first show how the funda-
mental modeling concepts of spatial objects, attributes, relationships, time points, 
time periods, and events are influenced by indeterminacy. Next, we focus on the 
change of spatial objects and their geometry in time. We argue that change can occur 

 

 
(a) (b) 

Fig. 4. (a) Possible trajectories of a moving object, (b) uncertainty between samples 

 



Capturing Fuzziness and Uncertainty of Spatiotemporal Objects         125 

 

on a discrete and on a continuous basis, as well as it can be recorded in time points 
and time periods. By combining these concepts, we present four different change 
scenarios, which are affected by indeterminacy to a various degree. The indetermi-
nacy of change is formalized and combines the spatial and temporal concepts. Finally, 
the rather general concepts are applied to existing application areas. We discuss un-
certainty existing in the context of moving-point-object applications. We give a 
change function to describe the position of moving objects in time, based on posi-
tional samples. The change function is influenced by measurement errors and sam-
pling uncertainty. 

Although mentioned, the paper does not discuss, directly, indeterminacy as related 
to relationships among spatial, temporal, or spatiotemporal objects. An extension of 
this work towards this direction is essential. Also, the mathematical models we pre-
sented are concrete enough to describe and motivate indeterminacy related to the 
temporal, spatial, and spatiotemporal domain. However, to actually implement these 
concepts, more detailed mathematical formulas are needed. Finally, in a more general 
framework, this work points towards the development of spatiotemporal data types 
and data structures incorporating indeterminacy.  

References 

1.  Burrough, P.A., MacMillan, R.A., amd van Deursen, W.: Fuzzy Classification Methods 
For Determining Land Suitability from Soil Profile Observations and Topography. Journal 
of Soil Science, 43, pp. 193-210, 1992. 

2.  Cheng, T. and Molenaar, M.: Diachronic Analysis of Fuzzy Objects. GeoInformatica 3(4), 
pp. 337 - 355, 1999 

3.  Chrisman, N.: A Theory of Cartographic Error and Its Measurement in Digital Databases. 
In Proceedings Auto-Carto 5, pp. 159-168, 1982.  

4.  Claramunt, C., and Theriault, M.: Managing Time in GIS: An Event-Oriented Approach. 
Recent Advances in Temporal Databases, Springer-Verlag, pp. 142-161, 1995. 

5.  Dyreson, C.E., Soo, M.D., and Snodgrass, R.T.: The Data Model for Time. The TSQL2 
Temporal Query Language, Kluwer Academics, pp. 97-101, 1995. 

6.  Fisher, P.: Boolean and Fuzzy Regions. Geographic Objects with Indeterminate 
Boundaries, Taylor & Francis, pp. 87-94, 1996. 

7.  Goodchild, M. and Gopal, S. (Eds): Accuracy of Spatial Databases. Taylor & Franics, 
1989. 

8.  Güting, R., Böhlen, M., Erwig, M., Jensen, C.S., Lorentzos, N., Schneider, M., and 
Vazirgiannis, M.: A Foundation for Representing and Querying Moving Objects. ACM 
Transactions on Database Systems 25(1), pp. 1-42, 2000. 

9.  Hadzilacos, T.: On Layer-Based Systems for Undetermined Boundaries. Geographic 
Objects with Indeterminate Boundaries, Taylor & Francis, pp. 237-256, 1996. 

10. Hadzilacos, T., and Tryfona, N.: A Model for Expressing Spatiotemporal Integrity 
Constraints. In Proc. of the International Conference on Theories and Methods of Spatio-
Temporal Reasoning, pp. 252 - 268, 1992.  

11.  Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions 
of the ASME–Journal of Basic Engineering, pp. 35-45, 1960. 



126         D. Pfoser and N. Tryfona 
 

 

12.  Krakiwsky, E.J., Harris, C. B., and Wong, R.: A Kalman Filter for Integrating Dead Reck-
oning, Map Matching, and GPS Positioning. In Proc. of the IEEE Position Location and 
Navigation Symposium, pp. 39-46, 1988. 

13.  Pfoser, D. and Jensen, C.S.: Capturing the Uncertainty of Moving-Object Representations. 
In Proc. of the 6th International Symposium on the Advances in Spatial Databases, pp. 
111-132, 1999. 

14.  Pfoser, D. and Tryfona, N.: Requirements, Definitions, and Notations for Spatiotemporal 
Application Environments. In Proc.  of the 6th ACM Symposium on Geographic Informa-
tion Systems, pp. 124-130, 1998. 

15. Pfoser, D. and Tryfona, N.: Capturing Fuzziness and Uncertainty of Spatiotemporal 
Objects. TimeCenter Technical Report, 2001. 

16. Pfoser, D., Jensen, C., and Theodoridis, Y.: Novel Approaches in Query Processing for 
Moving Objects Data. In Proc. of the 27th Conference on Very Large Databases, pp. 395-
406, 2000. 

17. Schneider, M., Metric Operations on Fuzzy Spatial Objects in Databases, In Proc. of the 8th 
ACM Symposium on Geographic Information Systems, 2000. 

18. Shibasaki, R.: Handling Spatiotemporal Uncertainties of Geo-Objects for Dynamic Update 
of GIS Databases from Multi-Source Data. In Advanced Geographic Data Modeling, 
Netherlands Geodetic Commission, Publications on Geodesy, 40, pp. 228-243, 1994.  

19. Vazirgiannis, M.: Uncertainty Handling in Spatial Relationships. In Proc. of the ACM 
Symp. on Applied Computing, 2000.  

20. Worboys, M.: Imprecision in Finite Resolution Spatial Data. GeoInformatica 2(3), pp. 
257-279, 1998.  



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 127-140, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
 

Probability-Based Tile Pre-fetching and Cache 
Replacement Algorithms for Web Geographical 

Information Systems 

Yong-Kyoon Kang, Ki-Chang Kim, and Yoo-Sung Kim 

Department of Computer Science & Engineering 
INHA University, INCHEON 402-751, Korea 

yskim@inha.ac.kr 

Abstract. In this paper, an effective probability-based tile pre-fetching algo-
rithm and a collaborative cache replacement algorithm for Web geographical 
information systems(Web GISs) are proposed. The proposed tile pre-fetching 
algorithm can approximate which tiles will be used in advance based on the 
global tile access pattern of all users and the semantics of query so that a user 
request will be answered quickly since the needed tiles are likely in cache data-
base. When a client runs out of cache space for newly down-loaded tiles, the 
proposed cache replacement algorithm determines which tiles should be re-
placed based on the future access probabilities. By combining the proposed tile 
pre-fetching algorithm with the cache replacement algorithm, the response time 
for user requests can be improved substantially in Web GIS systems.  

1  Introduction 

With the rapid growth of computer hardware and software technologies and the user’s 
requirements for geographical information, geographical information systems (GISs) 
that can analyze, process, and manage geo-spatial data have been developed and be-
come very popular in several fields, e.g. civil engineering and computer engineering 
([1]). Furthermore, since the Internet and World Wide Web(WWW) have become 
very popular in real worlds, users can get geographical information at a low cost from 
the Web servers that can provide geographical information. These systems are re-
ferred to as Web GIS systems ([2,3,4,5,6]).  

The types of Web GIS systems can be classified into server-side Web GIS and cli-
ent-side Web. In server-side Web GIS systems, since the server has to process all re-
quests of all clients, the server might be over-loaded, and the response time for user 
requests may become too slow ([2,7]). On the other hand, in client-side Web GIS sys-
tems, the client loads the geographical data processing modules from the server when 
it makes a connection to the server. From then on, the client can process users’ re-
quests by itself. Recently, client-side Web GIS systems have become very popular 
and several real systems are being developed.  



128     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

The granularity of transmission from the server to the client can be either a whole 
map or a tile of the map ([2]). If the granularity is a whole map, the server searches all 
spatial objects and all aspatial information on GIS database to retrieve relevant ob-
jects and information and sends the map with the retrieved aspatial information to the 
client. However, a map may be of very large size, since a map can include a large 
number of objects. It is clear that the larger the size of a communication unit becomes, 
the more loading time is needed between the server and the client. To reduce the ini-
tial loading time, many systems have adopted the concepts of tiling and layering. Til-
ing divides the map into several small pieces so that each of them can be transferred 
in a short time, while layering partitions the map into several layers such that each 
layer represents some specific information. 

Tiling can minimize the initial user’s response time, but it alone can’t minimize the 
total response time. To minimize the total response time, the system should pre-fetch 
some tiles that are likely to be accessed in advance and save them in a cached data-
base for future reusing. When the user requests the tiles that have been pre-fetched 
and saved at the cached database, the client can give these tiles to the user without the 
communication delay to fetch the required tiles from the server.  

In this paper, an efficient tile pre-fetching algorithm for Web GIS based on users’ 
global access pattern is proposed. In the proposed algorithm, the server collects and 
maintains the transition probabilities between adjacent tiles. With these probabilities 
the server can predict which tiles have the higher probability of accessing in next time 
than others, and by pre-fetching those recommended tiles, the client can respond to 
the user’s requests much faster.  

When the client’s cache is run out of space, the client should determine which tiles 
to replace with newly fetched tiles. Those tiles that are not likely to be accessed in the 
near future can be replaced, and the client should be able to select such tiles. We pro-
pose a cache replacement algorithm that predicts the future usage of the tiles cor-
rectly, based on the same access probabilities that are calculated and used for tile pre-
fetching. The proposed cache replacement algorithm selects tiles with small transition 
probabilities from the current requested tile as candidate tiles for replacement. 

The rest of this paper is organized as following. In Sect. 2, we discuss the architec-
ture of Web GIS systems and describe query processing in it. In Sect. 3, we propose 
an efficient tile pre-fetching algorithm that can determine a set of tiles that are likely 
to be requested in the near future, based on the global tile access patterns and a cache 
replacement algorithm that can collaborate with the proposed tile pre-fetching algo-
rithm in Web GIS systems. We also discuss an example that can show the effective-
ness of the proposed tile pre-fetching algorithm and cache replacement algorithm. 
Finally, we conclude the paper in Sect. 4.  



Probability-Based Tile Pre-fetching and Cache Replacement Algorithms     129 

 

2 Query Processing in Web GIS Systems 

The general architecture of Web GIS systems in which the proposed tile pre-fetching 
and cache replacement algorithms are used is in Fig. 1 ([2]). In Fig. 1, we do not in-
clude all components of Web GIS systems. That is, Fig. 1 shows the abstracted archi-
tecture of Web GIS systems.  

 

Client

Browsing 
Commands

GIS queries

Query Analyzer and Executor(QAE)

Cache 
Manager(CM)

Prefetch Agent(PA)

Cached DB

Server Prefetch Executor(PE)

Search Engine(SE)

GIS Database

Prefetch DB
(Tile Information, 

Probabilities of tiles)

Spatial DB Aspatial DB

 

Fig. 1. Abstracted architecture of Web GIS systems 

 
 
A Web GIS system mainly consists of two components; clients and a server. A client 

is the Web browser with several data processing facilities that are loaded from the server 
when the client makes a connection to the server. Server manages the GIS database that 
consists of spatial database and aspatial database and provides useful information to the 
clients when the clients submit user’s requests. As we discussed in the previous section, 
the server manages the spatial information in the unit of tile. That is, a map is decom-
posed into a set of tiles that can be transferred to the client in a short time.  



130     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

In Web GIS systems, users’ requests are classified into two categories; browsing 
commands and GIS queries. GIS queries include point queries, region queries, and 
object retrieval queries with selection predicates. To use the point query, the user 
gives the coordinates (a, b) of a point in a map, and the client serves the tile that has 
the given point. To use the region query, the user gives a specified region in rectangu-
lar form with (a1, b1) and (a2, b2) or circular form with the center point (a, b) and a ra-
dius, and the client returns a set of tiles that covers the given region. For an object 
retrieval query with selection predicates, the client returns the objects that satisfy the 
given predicates on the map. Usually, GIS queries such as point queries, region que-
ries, and object retrieval queries are used as the first request when users make a ses-
sion to the Web GIS systems. That is, the user first submits a GIS query and, based on 
the result of the first GIS query, submits a sequence of browsing commands and/or 
GIS queries. Browsing commands include zooming and moving commands. To exe-
cute a zoom-in command, by which the user can see the current position (a, b) of the 
map in more detail, if the required data has been cached at client, the client doesn’t 
have to go to the server. Otherwise, however, client should down-load more detailed 
map information from the server. For a zoom-out command, by which the user can 
view the map in wider area, the client should fetch neighbor tiles of the current one 
from the server. By using the moving commands, users can retrieve 4 neighbor tiles 
of the current tile. That is, by using a moving command, users can move to one of the 
4 neighbor tiles in the direction of up, down, left, and right, respectively.  

 
The formats of users’ requests in Web GIS systems are as following.  
 
Point_Query(a, b)  
Rectangle_Region_Query (a1, b1, a2, b2) 
Circle_Region_Query(a, b, radius)  
Objet_Retireval_Query(selection_predicates)  
Zoom-in(a, b, smaller_radius) 
Zoom-out(a, b, larger_radius) 
Moving(a, b, direction)  
 
In Fig. 1, user’s request is processed as following. When a user submits a request 

to the client. Query Analyzer and Executor (QAE) analyzes the user’s request and 
executes it. To execute user’s request, QAE requests necessary data that should be 
processed for user’s request from Cache Manager (CM). If CM can find the data in 
the cached database, it transfers the data without requesting to the server. Otherwise, 
CM sends the request to Pre-fetch Agent (PA) to retrieve the necessary data from the 
server. PA basically tosses the user’s request to Pre-fetch Executor (PE) at the server. 
However, to give some information needed for tile pre-fetching to the server, PA adds 
some additional information to the original users’ requests. That is, in addition to the 



Probability-Based Tile Pre-fetching and Cache Replacement Algorithms     131 

 

original request, PA also gives the list of tiles that have been cached, the transition 
frequencies among the cached tiles since the last connection to the server, and the 
number of tiles it wants to pre-fetch. The pre-fetching size can be determined on the 
basis of the size of free space for tile pre-fetching, and the regularity degree of access 
pattern of the user at the client. 

When PE receives a modified request from the PA, PE decomposes the request into 
the original request and the augmented information. It sends the original request to 
Search Engine (SE) to retrieve the result of the user’s request and performs pre-
fetching based on the retrieved result and the augmented information. To properly 
pre-fetch tiles that are likely to be accessed by the user in the near future, the pre-
fetching algorithm uses the transition probabilities between tiles, and the details on 
the pre-fetching algorithm will be discussed in Sect. 3.1.  

PE sends the pre-fetching result tiles with the retrieved tiles for a user’s request to 
CM through PA. When CM receives too many tiles than its storage capacity, CM de-
termines which space will be replaced with the newly received results by using the 
cache replacement algorithm described in Sect. 3.2.  

When QAE receives the retrieved result, QAE executes the user’s request on the 
retrieved data, and the final result is shown to the user’s browser. 

3  Tile Pre-fetching and Cache Replacement in Web GIS Systems 

3.1  A Probability-Based Tile Pre-fetching Algorithm  

PE determines which tiles should be pre-fetched based on the updated global access 
pattern information according to Algorithm 1. To determine tiles to be pre-fetched, 
PE first updates the global access pattern by using the local access pattern sent from 
PA (step 1). If the number of tiles returned as the result of the request is greater than 
pre-fetch_size, we do not need to pre-fetch, since the request has retrieved more tiles 
than the expectation specified by pre-fetch_size (step 2). Otherwise, we calculate the 
normalized probabilities from Tx,y to its 4 neighbor tiles that are within distance = 1 
(step 3). If the pre-fetch size is greater than 1, we calculate the transition probabilities 
to those tiles located within distance � pre-fetch_size (step 4~5). At step 6, we sort the 
probabilities in descending order. Then we select top-ranked pre-fetch_size tiles from 
the pre-fetching space (step 7). At step 8, we eliminate the tiles that have been already 
cached at the client by the previous requests. The list of tiles to be pre-fetched is re-
turned as the result of Algorithm 1. And, Algorithm 1 also returns the own_tile_list 
with the updated transition probabilities, and the result is sent to the CM of client for 
cache replacement. 



132     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

 
 

As an example we consider a pre-fetching request that returns tile Tx,y
1 as the re-

trieval result. If pre-fetch_size is 0, Algorithm 1 quits with NO_PRE-FETCH at step 2 

after updating the global access pattern by using the local_access_pattern. Otherwise, 

i.e., if pre-fetch_size is greater than 0, step 3 of Algorithm 1 is executed. Assume that 

pre-fetch_size is 3, which means PA want to pre-fetch up to 3 tiles. PE forms the pre-

fetching space with the distance equal to 3. The pre-fetching space includes tiles that 

                                                           
1 In general, Rectangle_Region_Query, Circle_Region_Query, Object_Retrieval_Query, and 

Zoom-out commands might return more than one tile as the retrieved result. For simplicity, 
however, we assume that a single tile, Tx,y , is retrieved. 

Algorithm 1: Pre-fetching Algorithm Based on Global Access Pattern 

 

Input: pre-fetch_size, own_tile_list, local_access_pattern, return_tiles including 

central tile Tx,y with specified point (a, b) 

Output: list of tiles with transition probabilities to be pre-fetched for pre-fetching,

own_tile_list with the updated transition probabilities for cache replacement 

Data Structure: transition probability matrix 

 
1:  Updates the global access pattern by using local_access_pattern; 
2:  IF (number of return_tiles > pre-fetch_size) RETURN (NO_PRE-FETCH); 

3:  Computes the normalized probabilities from Tx,y to its 4 neighbors /*distance 
= 1*/; 

4:  FOR each tile within distance from 2 to pre-fetch_size DO /* distance � 2 */ 
5:  Compute the conditional probability of tile moving from Tx,y to the tile; 
6:  Sorts the probabilities of tiles within the pre-fetching space of distance � pre-

fetch_size; 
7:  Let pre-fetch_list = select top-ranked pre-fetch_size tiles within the pre-

fetching space; 

8:  Let pre-fetch_list = pre-fetch_list – own_tile_list; 
9:  Resets the transition probabilities of all tiles in {own_tile_list – pre-

fetch_list} to 0; 

10: RETURN(pre-fetch_list and own_tile_list with the updated transition prob-
abilities); 



Probability-Based Tile Pre-fetching and Cache Replacement Algorithms     133 

 

can be accessed within the specified number of tile movements from the retrieved tile, 

Tx,y. Fig. 2 shows an example of pre-fetching space from Tx,y with pre-fetch_size = 3. 

Within the pre-fetching space, the four immediate neighbor tiles of Tx,y, Tx,y+1, Tx+1,y, 

Tx,y-1, and Tx-1,y can be reached by 1 tile movement from Tx,y. Tiles Tx,y+2, Tx+1,y+1, Tx+2,y, 

Tx+1,y-1, Tx,y-2, Tx-1,y-1, Tx-2,y, and Tx-1,y+1 can be reached by 2 tile movements from Tx,y. Fi-

nally, tiles Tx,y+3, Tx+1,y+2, Tx+2,y+1, Tx+3,y, Tx+2,y-1, Tx+1,y-2, Tx,y-3, Tx-1,y-2, Tx-2,y-1, Tx-3,y, Tx-1,y+2, and 

Tx-1,y+1 can be reached by 3 tile movements from Tx,y. In Fig. 2, the edge from a tile to a 

neighbor tile stands for a tile movement, and the label of the edge means the probabil-

ity for such a transition. That is, P(x,y�x,y+1) stands for the probability of tile mov-

ing from Tx,y to Tx,y+1.  

For tiles that can be reached by 1 tile movement from Tx,y, we compute the 

normalized probabilities. The normalization of the probabilities is necessary be-

cause a specified position (a, b) in Tx,y has an effect to the next tile movement. 

That is, if the specified point (a, b) is near to the upper border, then the user who 

has specified the point is likely to move to the upper tile than the lower one, and 

so on. 

To explain the normalization process, let’s consider the situation depicted in Fig. 

3. The original probabilities of tile moving from Tx,y to Tx,y+1, Tx+1,y, Tx,y-1, and Tx-1,y are 

P(x,y�x,y+1), P(x,y�x+1,y), P(x,y�x,y-1), and P(x,y�x-1,y), respectively. The 

specified location by the user is (a,b). Let’s represent the normalized transition prob-

abilities with distance 1 from Tx,y as P’(x,y�x,y+1), P’(x,y�x+1,y), P’(x,y�x,y-1), 

and P’(x,y�x-1,y), respectively. Note that the summation of the normalized prob-

abilities, P’(x,y�x+1,y) and P’(x,y�x-1,y) along the x axis should be same as the 

summation of the original probabilities of P(x,y�x+1,y) and P(x,y�x-1,y), and they 

should reflect the internal division ratio of the specified position along the x axis. 

Equations (1) and (2) show the formula for P’(x,y�x+1,y) and P’(x,y�x-1,y), re-

spectively. In equations (1) and (2), for simplicity, we use Pright and Pleft instead of 

P(x,y�x+1,y) and P(x,y�x-1,y), respectively. A similar argument can be made for 

P’(x,y�x,y+1) and P’(x,y�x,y-1), and the resulting formulas are in equations (3) and 

(4), respectively. In equations (3) and (4), again for simplicity, we use Pup and Pdown 

instead of P(x,y�x,y+1) and P(x,y�x,y-1), respectively. 



134     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

���

�����

���� �

�����

�����

�������

�����

�������

�����

�������

�����

�������

�����

�����

�������

�������

�����

�������

�����

�������

�������

�������

�������

�������

�����

	
�����������

	
�����������

	
�����������

	
�����������

	
���������������

	
���������������

	
���������������

	
�������������

	
���������������

	
���������������

	
�������������

	
���������������

	
���������������

	
�������������

	
���������������

	
�������������

	
���������������

	
���������������

	
�����������������

	
�����������������

	
���������������

	
�������������

	
���������������

	
�����������������

	
�����������������

	
���������������

	
�������������

	
���������������

	
�����������������

	
�����������������

	
���������������

	
�������������

	
���������������

	
�����������������

	
�����������������

������� � � ������� � � ������� � � ������� � �

	
�������������

Fig. 2. Pre-fetching space within distance � 3 from Tx,y 

�
�
�
�
�
�
�
�
�
�
�
	



����� �� ��	��


�
�
�
�
�
�
�
�
�
�
�
�

��� �


�
�

�
�

�
��

�
��

�
��

�
��

���������	��


 

Fig. 3. Normalized probabilities from Tx,y to Its 4 neighbor tiles 

 



Probability-Based Tile Pre-fetching and Cache Replacement Algorithms     135 

 

rightx
leftxrightx

leftright
right Pl

PlPl

PP
P 1

21 )(

)(
' �

�
�

�  
(1) 

leftx
leftxrightx

leftright
left Pl

PlPl

PP
P 2

21 )(

)(
' �

�
�

�  
(2) 

upy
downyupy

downup
up Pl

PlPl

PP
P 2

12 )(

)(
' �

�
�

�  
(3) 

downy
downyupy

downup
down Pl

PlPl

PP
P 1

12 )(

)(
' �

�
�

�  
(4) 

To compute the probability of tile moving from Tx,y to a tile that is within distance = 
2, we can use the conditional probability computation. As an example, let’s consider 
how to compute the conditional probability of tile moving from Tx,y to the tile Tx,y+2. 
From Fig. 2, we can see that Tx,y+2 can be reached by two tile movements from Tx,y 
through Tx,y+1. That is, we can reach to Tx,y+2 from Tx,y by moving first to Tx,y+1 and then 
moving to Tx,y+2. Thus, we can compute the conditional probability of tile moving from 
Tx,y to Tx,y+2 through Tx,y+1 by equation (5).  

)2,1,()1,,(')2,,( ��������� yxyxPyxyxPyxyxP  
(5) 

Some tiles can be reached in several ways. For example, Tx+1,y+1 can be reached from 
Tx,y by using two different paths (see Fig. 2): one is Tx,y � Tx,y+1 � Tx+1,y+1, and the other 
is Tx,y � Tx+1,y � Tx+1,y+1. In this case, the conditional probability of tile moving from 
Tx,y to Tx+1,y+1 can be computed as follows.  

)1,11,()1,,(')1,1,( ����������� yxyxPyxyxPyxyxP

+ )1,1,1(),1,(' ������� yxyxPyxyxP  

(6) 

We can do the similar computation for the tiles of distance = 3. The conditional 
probability of tile moving from Tx,y to Tx,y+3 is computed by using equation (7) (see also 
Fig. 2).  



136     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

)3,2,()2,,()3,,( ��������� yxyxPyxyxPyxyxP  
(7) 

Also, for Tx+1,y+2 in Fig. 2, the conditional probability of tile moving from Tx,y to Tx+1,y+2 
is computed by using equation (8).  

)3,2,()2,,()2,1,( ���������� yxyxPyxyxPyxyxP  

+ )2,11,1()1,1,( ��������� yxyxPyxyxP  

(8) 

Generally, the conditional probabilities of tile moving from Tx,y to Tx+n,y+m, where the 
maximum distance is |n| + |m|, can be computed as in equation (9).  

P(x,y � x+n, y+m) = SUM(conditional probabilities of all paths from 
Tx,y to Tx+n,y+m) 

(9) 

After computing the conditional probabilities to all tiles within distance � pre-
fetch_size from the retrieved tile, Tx,y, at step 4~5 of Algorithm 1, the list of tiles that 
should be pre-fetched is selected according to step 6~8. To remove the tiles that have 
been saved in the client’s cache database but will not be used in future from the cache 
database for making free cache space for the current request, step 9 of Algorithm 1 
resets the transition probabilities of these tiles to 0. Then, the cache space for these 
tiles can be replaced when CM needs more space for the newly fetched tiles. As the 
result of Algorithm 1, the list of tiles to be pre-fetched and the own_tile_list with the 
updated transition probabilities are returned.  
After PE pre-fetches the tiles of pre-fetch_list, it returns the retrieved result tiles that 
are actually retrieved for the request, the pre-fetched tiles with the transition prob-
abilities, and the own_tile_list with the updated transition probabilities to CM through 
PA of the client issuing the request.  

3.2 A Collaborative Cache Replacement Algorithm  

When CM of a client receives the result described above for a user request from PE, 
CM stores both the retrieved tiles and the pre-fetched tiles in the cache. However, 
when it runs out of the cache space, it should remove some tiles to prepare free space 
for newly fetched tiles. To determine which tiles should be removed, the proposed 
cache replacement algorithm (Algorithm 2) utilizes the transition probabilities for 
tiles in own_tile_list, which are already computed for the purpose of tile pre-fetching 
(Algorithm 1). Algorithm 2 selects a set of tiles that have relatively smaller values of 



Probability-Based Tile Pre-fetching and Cache Replacement Algorithms     137 

 

transition probability from the current position than others among own_tile_list as the 
victim for cache replacement. 

 
In Algorithm 2, step 3 through step 7 select the set of tiles that should be removed 

from the cached database to make enough free space for storing the retrieved result 
tiles and the pre-fetched tiles. The selected tiles are actually removed from the cached 
database (step 8) and the list of cached tiles (step 9). At step 10, the retrieved tiles and 
the pre-fetched tiles are stored in the cached database. After cache replacement, the 
list of actual cached tiles and the size of free cache space are updated at step 11 and 
12, respectively.  

3.3 Effects of the Proposed Tile Pre-fetching and Cache Replacement Algorithms  

To show the effectiveness of the proposed tile pre-fetching and cache replacement 
algorithms, we discuss an example in this subsection. Assume that all tiles are in same 
size and the cached database can store 5 tiles at maximum and PA submits the follow-
ing query to PE.  

Algorithm 2: Cache Replacement Algorithm 
 
Input: retrieved result tiles, pre-fetched tiles, and own_tile_list with the transition

probabilities 
Data structure: list of cached tiles, size of free cache space 
 
1:  victim_tile_list = NULL; 
2:  required space = retrieved result tiles + pre-fetched tiles;  

3:  WHILE (size_of required space � size of free cache space ) DO { 
4:  select tile Ti,j that has the minimum transition probability from own_tile_list; 
5:  victim_tile_list + = { Ti,j }; 
6:  own_tile_list – = { Ti,j }; 
7:  size of free cache space + = size_of(Ti,j); } /* for making enough space */ 
8:  remove tiles in victim_tile_list from the cached database; 
9:  list of cached tiles – = victim_tile_list; 
10:  saves retrieved result tiles and pre-fetched tiles into the cached database; 
11:  list of cached tiles += (retrieved result tiles + pre-fetched tiles); 
12:  size of free cache space – = size_of(retrieved result tiles + pre-fetched tiles); 
13: RETURN; 



138     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

Point_Query(a, b, pre-fetch_size(=2)) with 

own_tile_list(={(x,y-1),(x+1,y-1),(x,y-2),(x-1,y-1)}), 

local_access_pattern(=NULL). 

 And as the result of the above query, assume tile Tx,y is returned. The specified 
point (a, b) divides internally the horizontal length of Tx,y into the ratio of 6:4 for lx1:lx2 
of Fig. 3. Also the specified point (a, b) divides internally the vertical length of Tx,y 
into the ratio of 1:9 for ly1:ly2 of Fig. 3. We also assume that the original probabilities 
for tile moving from a tile to its neighbor tiles are as shown in Fig. 4.  

���

�����

���	
���

���� �

������

�����

��������

�����

��������

�������

������

����

��������

�������

�������

����

��������

�������

�����

�

����

��������

�������

����	��

����

������

��	

��

���

���

��

���

��	

��

���

��

���

���

���

���

��	

��	

�������� � � �������� � � �������� � 

 

Fig. 4. A pre-fetching space within distance � 2 from Tx,y 

According to Algorithm 1, the global access pattern is first updated by using the lo-
cal access pattern. However, since the local access pattern is NULL, the global access 
pattern does not change. Since the number of tiles returned as the result of the query is 



Probability-Based Tile Pre-fetching and Cache Replacement Algorithms     139 

 

1, and pre-fetch_size(=2) is greater than the number of returned tiles(=1), step 3 of 
Algorithm 1 computes the normalized probabilities of tile moving from Tx,y to its 4 
neighbor tiles by using equations (1), (2), (3), and (4), respectively. The normalized 
probabilities are shown within parentheses at the four nodes of distance = 1 in Fig. 4. 
And, the conditional probabilities for the tiles of distance = 2 is computed by using 
either equation (5) or equation (6) according to the number of incoming branches into 
the node in Fig. 4, and the computed result is also shown at each node of distance = 2 
with parentheses in Fig. 4. 

Among the nodes in the pre-fetching space of distance � pre-fetch_size(=2), the 
top-ranked 2 tiles are selected for the pre-fetching list. Hence, Tx,y+1 and Tx,y+2 are se-
lected for actual pre-fetching. The final result for the above Point_Query, therefore, is 
Tx,y, Tx,y+1, and Tx,y+2 . Tx,y is transferred to the client as the actual retrieved result of the 
query, and Tx,y+1 and Tx,y+1 are also transferred to the client as the pre-fetching results.  

When CM of the client issuing the query receives the result, Tx,y, Tx,y+1, and Tx,y+2, it 
runs out of free space for caching because 4 tiles, Tx,y-1, Tx+1,y-1, Tx,y-2, and Tx-1,y-1 have 
been stored at its cached database in which 5 tiles can be stored at maximum, i.e., the 
size of free cache space is 1. Hence, as the victims for cache replacement, Algorithm 
2 selects Tx,y-2 and Tx-1,y-1 among the own_tile_list since these have smaller transition 
probabilities than others. Finally, the cached database has stored Tx,y, Tx,y+1, Tx,y+2, Tx,y-1, 
and Tx+1,y-1 after the complete execution of the above Point_Query.  

In that case, as long as user moves around these tiles, the communication between 
the client and the server is not needed since the client can serve these user’s requests 
without down loading the additional tiles from the server. However, if these tiles have 
not been pre-fetched, the client should down load these tiles newly, and the user has 
to wait until these tiles are completely fetched into the cached database. So, by using 
the proposed pre-fetching algorithm and the collaborative cache replacement algo-
rithms, the response time can be remarkably improved in Web GIS systems. 

4  Conclusions 

In this paper, we have proposed an effective tile pre-fetching algorithm that is able to 
determine which tiles are likely to be accessed in the near future according to the 
global access pattern of all users in Web geographical information systems(Web 
GISs). And we have also proposed a collaborative cache replacement algorithm that 
can work with the proposed tile pre-fetching algorithm. The proposed cache replace-
ment algorithm determines which tile space should be removed from the client’s 
cached database based on the transition probabilities already computed for tile pre-
fetching. We have modified the architecture of Web GIS systems to accommodate the 



140     Y.-K. Kang, K.-C. Kim, and Y.-S. Kim 

 

proposed pre-fetching algorithm with the collaborative cache replacement algorithm 
and showed that the proposed algorithms improved the response time substantially.  

As the future works, we are doing the experimentation to inspect the performance of 
the proposed pre-fetching and cache replacement algorithms through simulation. We 
also plan to make an adaptation of the proposed algorithms into a Web GIS engine.  

Acknowledgement. This work was supported by a grant from INHA University.  

References 

1.  R. Laurini and D. Thompson, “Fundamentals of Spatial Information Systems”, ACA-
DEMIC Press, 1992.  

2.  Young-Sub Cho, A Client-side Web GIS Using Tiling Storage Structure and Hybrid Spa-
tial Query Processing Strategy, Ph. D. Thesis, Dept. of Computer Science and Engineering, 
INHA University, 1999.  

3.  Edwardm P. F. Chan and Koji Ueda, “Efficient Query Result Retrieval over the Web”, The 
Proceedings of 7th International Conference on Parallel and Distributed Systems (ICPADS 
00), July 2000. Page 161-170. 

4.  K. E. Foote and A. P. Kirvan, “WebGIS, NCGIA Core Curriculum in GIScience”, 
http://www.ncgia.uscb.edu/giscc/units/u133/u133.html, December 1997. 

5.  Serena Coetzee and Judith Bishop, “A New Way to Query GISs on the Web”, IEEE Soft-
ware, May/June 1998.  

6.  M. V. Liedekerke, A. Jones, and G. Graziani, “The European Tracer Experiment Informa-
tion System: Where GIS and WWW meet”, The Proceedings of the 1995 ESRI user Con-
ference, http://www.esri.com/library/userconf/proce95/to050/p022.html 

7. Y. K. Choo and C. Lee, “Integrated Distributed Geographical Information System 
(IDGIS)”, The Proceeding of the 1997 ESRI User Conference,  
http://www.esri.com/library/userconf/proc97/TO150/PAP101/P101.HTM  

8.  D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J. B. Yu, “Client-Server Paradise”, The 
Proceedings of the 20th VLDB Conference, 1994.  

9.  M. Carey, M. Franlin, Ml Livny, and E. Schekita, “Data Caching Tradeoffs in Client-
Server DBMS Architecture”, The Proceedings of the ACM SIGMOD, Vol. 20, 1991.  



Optimizing Pattern Queries for Web Access
Logs�

Tadeusz Morzy, Marek Wojciechowski, and Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Tadeusz.Morzy@put.poznan.pl

Marek.Wojciechowski@cs.put.poznan.pl
Maciej.Zakrzewicz@cs.put.poznan.pl

Abstract. Web access logs, usually stored in relational databases, are
commonly used for various data mining and data analysis tasks. The
tasks typically consist in searching the web access logs for event sequences
that support a given sequential pattern. For large data volumes, this
type of searching is extremely time consuming and is not well optimized
by traditional indexing techniques. In this paper we present a new index
structure to optimize pattern search queries on web access logs. We focus
on its physical structure, maintenance and performance issues.

1 Introduction

Web access logs represent the history (the sequences) of users’ visits to a web
server [11]. Log entries are collected automatically and can be used by admin-
istrators for web usage analysis [4][6][7][16][17][18][20]. Usually, after some fre-
quently occurring sequential patterns are discovered [1], the logs are searched
for access sequences that contain (support) the discovered sequential patterns.
We will refer to this type of searching as to pattern queries.

Example web access log is shown in Fig. 1. For each client’s request we store
the client’s IP address, the timestamp, and the URL address of the requested
object. In general, several requests from the same client may have identical times-
tamps since they can represent components of a single web page (e.g. attached
images). In most cases, web access logs are stored in relational, SQL-accessed
databases. Let us consider the following example of using the relational approach
to pattern queries. Assume that the relation R(IP,TS,URL) stores web access se-
quences. Each tuple contains the sequence identifier (IP), the timestamp (TS),
and the item (URL). Our example relation R describes three web access se-
quences: {A, B} → {C} → {D}, {A} → {E, C} → {F}, and {B, C, D} → {A}.
Let the searched sequential pattern (subsequence) be: {A} → {E} → {F}. We
are looking for all the web access sequences that contain the given sequential
� This work was partially supported by the grant no. KBN 43-1309 from the State

Committee for Scientific Research (KBN), Poland.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 141–154, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



142 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

pattern. Fig. 2 gives the relation R and the SQL query, which implements the
pattern query.

115544..1111..223311..1177 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT // HHTTTTPP//11..11"" 220000 11667733
115544..1111..223311..1177 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //aappaacchhee__ppbb..ggiiff HHTTTTPP//11..11"" 220000 22332266
119922..116688..11..2255 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //ddeemmoo..hhttmmll HHTTTTPP//11..11"" 220000 552200
119922..116688..11..2255 -- -- [[1133//JJuull//22000000::2200::4444::4455 ++00220000]] ""GGEETT //bbooookkss..hhttmmll HHTTTTPP//11..11"" 220000 33440022
116600..8811..7777..2200 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT // HHTTTTPP//11..11"" 220000 11667733
115544..1111..223311..1177 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //ccaarr..hhttmmll HHTTTTPP//11..11"" 220000 22558800
119922..116688..11..2255 -- -- [[1133//JJuull//22000000::2200::4499::5500 ++00220000]] ""GGEETT //ccddiisskk..hhttmmll HHTTTTPP//11..11"" 220000 33885566
1100..111111..6622..110011 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //nneeww//ddeemmoo..hhttmmll HHTTTTPP//11..11"" 220000 997711

������������	
���������
��
�����������
��
����������


Fig. 1. Web access log example and a web access sequence

IP TS URL
1 1 A
1 1 B
1 2 C
1 3 D
2 1 A
2 2 E
2 2 C
2 3 F
3 1 B
3 1 C
3 1 D
3 2 A

SELECT IP
FROM R R1, R R2, R R3
WHERE R1.IP=R2.IP

AND R2.IP=R3.IP
AND R1.TS<R2.TS
AND R2.TS<R3.TS
AND R1.URL=’A’
AND R2.URL=’E’
AND R3.URL=’F’;

Fig. 2. The relation of web access sequences and the pattern query

Since web access logs tend to be very large, there is a problem of appropriate
optimizing the database access while performing pattern queries, e.g. by means
of the above SQL query. Database research has developed many indexing tech-
niques, like B+-trees [5], bitmapped indexes [15], k-d-trees [3], R-trees [10], which
are used to optimize queries based on exact matches of single tuples. However,
these techniques do not significantly improve pattern queries, which deal with
partial matches of multi-tuple sequences. There are also proposals for set-based
indexing [8][14], which is used to improve subset searching (e.g. find all papers
containing ”data mining” and ”data warehousing” in a keyword list). However,
these methods work for retrieval of unordered sets of items only.

In order to realize the shortcomings of the existing indexing methods, let
us consider applying B+-tree and set-based indexes to execute the query from
Fig. 2:

1. Using a B+-tree index, tuples containing all items of each web access se-
quence are joined first (by IP attribute), and then the verification is done
whether they contain the given items in the given order. This approach can
be fairly ineffective since a web access sequence may span across many disk
block, what results in multiple scanning of each block of the relation.



Optimizing Pattern Queries for Web Access Logs 143

2. Using a set-based index, the sequence identifiers (IP attribute) of all se-
quences, which contain the searched items in any order, are found, and then
the sequences are read from the relation (perhaps with help of a B+-tree) to
verify the ordering of their items. This approach gives much better results,
as compared to a B+-tree index, however, the significant overhead comes
from reading and verifying the sequences having incorrect ordering.

In this paper we consider pattern queries on web access log databases. Such
databases are characterized by relatively small number of items (URLs), which
occur frequently in various order, and therefore a set-based index is not effi-
cient. We present a new bitmap-oriented indexing method, which optimizes the
problem of pattern queries. The basic idea behind our method, as compared to
set-based indexes, is that the index structure includes not only the items of a
sequence, but also the ordering of the items. In this way, we reduce the num-
ber of web access sequences needlessly read from the database, what results in
shorter query execution time. We performed several experiments, which showed
the significant improvement over existing indexing methods.

The structure of the paper is as follows. Section 2 describes the sequential
index structure and algorithms to create and to use the index. In Sect. 3 we
present the results of our performance experiments. Section 4 contains final
conclusions.

1.1 Basic Definitions and Problem Formulation

Let L = l1, l2, ..., lk be a set of literals called items (URLs). Web access sequence
S =< X1X2...Xn > is an ordered list of sets of items such that each set of items
Xi ⊆ L. Xi is called a sequence element. All items in a sequence element are
unordered. For short, we will also refer to a web access sequence as to a sequence.

We say that a web access sequence < X1X2...Xn > is contained in another
web access sequence < Y1Y2...Ym > if there exist integers i1 < i2 < ... < in such
that X1 ⊆ Yi1 , X2 ⊆ Yi2 , ..., Xn ⊆ Yin

.
Problem Formulation. Let D be a database of variable length web access

sequences. Let S be a web access sequence. The problem of pattern queries
consists in finding in D all web access sequences, which contain the web access
sequence S.

1.2 Related Work

Database indexes provided today by most database systems are B+-tree indexes
to retrieve tuples of a relation with specified values involving one or more at-
tributes [5]. Each non-leaf node contains entries of the form (v, p) where v is
the separator value which is derived from the keys of the tuples and is used to
tell which sub-tree holds the searched key, and p is the pointer to its child node.
Each leaf node contains entries of the form (k, p), where p is the pointer to the
tuple corresponding to the key k.



144 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

A set-based bitmap indexing, which is used to enable faster subset search
in relational databases was presented in [14] (a special case of superimposed
coding). The key idea of the set-based bitmap index is to build binary keys,
called group bitmap keys, associated with each item set. The group bitmap key
represents contents of the item set by setting bits to ’1’ on positions determined
from item values (by means of modulo function). An example set-based bitmap
index for three item sets: {0, 7, 12, 13}, {2, 4}, and {10, 15, 17} is given in Fig. 3.
When a subset search query seeking for item sets containing e.g. items 15 and 17
is issued, the group bitmap key for the searched subset is computed (see Fig. 4).
Then, by means of a bit-wise AND, the index is scanned for keys containing
1’s on the same positions. As the result of the first step of the subset search
procedure, the item sets identified by set=1 and set=3 are returned. Then, in
the verification step (ambiguity of modulo function), these item sets are tested
for the containment of the items 15 and 17. Finally, the item set identified by
set=3 is the result of the subset search. Notice that this indexing method does
not consider items ordering.

set item

1 0

1 7

1 12

1 13

2 2

2 4

3 10

3 15

3 17

hash keysrelation

00001

00100

00100

01000

00100

10000

00001

00001

00100

group bitmap
keys

01101

10100

00101

set-based
bitmap index

setbitmap key

101101

210100

300001

Fig. 3. Set-based bitmap index

searched
subset of items

15

17

00001

00100

hash keys
group bitmap

key

00101

set-based
bitmap index

i
setbitmap key

101101

210100

300101

AND

setbitmap key

101101

verify item sets: 1,3

300101

Fig. 4. Set retrieval using set-based bitmap index

In [8], a conceptual clustering method, using entropic criterion for conceptual
clustering EC3 is used to define indexing schemes on sets of binary features.
Similar data item sets are stored in the same cluster, and similarity measure
based on entropy is used during retrieval to find a cluster containing the searched
subset. The method does not consider items ordering.



Optimizing Pattern Queries for Web Access Logs 145

2 Sequential Index Structure

In this section we present our indexing method, called sequential indexing, for
optimizing pattern queries. The sequential index structure consists of sequences
of bitmaps generated for web access sequences. Each bitmap encodes all items
(similarly to a set-based bitmap index) of a portion of a web access sequence as
well as ordering relations between each two of the items.

We start with the preliminaries, then we present the index construction algo-
rithm and explain how to use the sequential index structure. Finally, we discuss
index storage and maintenance problems.

2.1 Preliminaries

Web access sequences contain categorical items in the form of URLs. For sake
of convenience, we convert these items to integer values by means of an item
mapping function.

Definition 1. An item mapping function fi(x), where x is a literal, is a func-
tion which transforms a literal into an integer value.

Example 1. Given a set of literals L = {A, B, C, D, E, F}, an item mapping
function can take the following values: fi(A)=1, fi(B)=2, fi(C)=3, fi(D)=4,
fi(E)=5, fi(F )=6.

Similarly, we use an order mapping function to express web access sequence
ordering relations by means of integer values. Thus, we will be able to represent
web access sequence items as well as web access sequence ordering uniformly.

Definition 2. An order mapping function fo(x, y), where x and y are literals
and fo(x, y) 	= fo(y, x), is a function which transforms a web access sequence
< {x}{y} > into an integer value.

Example 2. For the set of literals used in the previous example, an order mapping
function can be expressed as: fo(x, y) = 6 ∗ fi(x) + fi(y), e.g. fo(C, F ) = 24.

Using the above definitions, we will be able to transform web access sequences
into item sets, which are easier to manage, search and index. An item set repre-
senting a web access sequence is called an equivalent set.

Definition 3. An equivalent set E for a web access sequence S =< X1X2...
Xn > is defined as:

E =

( ⋃
x∈X1∪X2∪...∪Xn

{fi(x)}
)

∪

⎛
⎜⎜⎝ ⋃

x,y∈X1∪X2∪...∪Xn:
x precedes y

{fo(x, y)}

⎞
⎟⎟⎠ (1)

where: fi() is an item mapping function and fo() is an order mapping function.



146 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

Example 3. For the web access sequence S =< {A, B}{C}{D} > and the pre-
sented item mapping function and order mapping function, the equivalent set E
is evaluated as follows:

E =
(⋃

x∈{A,B,C,D}{fi(x)}
)

∪
(⋃

x,y∈{<{A}{C}>,<{B}{C}>,
<{A}{D}>,<{B}{D}>,<{C}{D}>}

{fo(x, y)}
)

=

= {fi(A)}∪{fi(B)}∪{fi(C)}∪{fi(D)}∪{fo(A, C)}∪{fo(B, C)}∪{fo(A, D)}∪
∪ {fo(B, D)} ∪ {fo(C, D)} = {1, 2, 3, 4, 9, 15, 10, 16, 22}

Observation. For any two web access sequences S1 and S2, we have: S2 contains
S1 if E1 ⊆ E2, where E1 is the equivalent set for S1, and E2 is the equivalent
set for S2. In general, this property is not reversible.

The size of the equivalent set depends on the number of items in the web access
sequence and on the number of ordering relations between the items. For a
given number of items in the web access sequence, the equivalent set will be the
smallest if there are no ordering relations at all (i.e. S =< X >, then |E| = |X|,
since E = X), and will be the largest if S is a sequence of one-item sets (i.e.
S =< X1X2...Xn >, for all i we have |Xi| = 1, then |E| = n +

(
n
2

)
).

Since the size of an equivalent set quickly increases while increasing the num-
ber of the original sequence elements, we split web access sequences into parti-
tions, which are small enough to process and encode.

Definition 4. We say that a web access sequence S =< X1X2...Xn > is parti-
tioned into web access sequences S1 =< X1...Xa1 >, S2 =< Xa1+1...Xa2 > , ...,
Sk =< Xaj+1...Xn > with level β if for each web access sequence Si the size of
its equivalent set |Ei| < β and for all x, y ∈ X1 ∪ X2 ∪ ... ∪ Xn, where x precedes
y, we have: either < {x}{y} > is contained in Si or {x} is contained in Si, and
{y} is contained in Sj, where i < j (β should be greater than maximal item set
size).

Example 4. Partitioning the web access sequence S =< {A, B}{C}{D}{A, F}
{B}{E} > with level 10 results in two web access sequences: S1 =< {A, B}{C}
{D} > and S2 =< {A, F}{B}{E} >, since the sizes of the equivalent sets are
respectively: |E1| = 9 (E1 = {1, 2, 3, 4, 9, 15, 10, 16, 22}), and |E2| = 9 (E2 =
{1, 6, 2, 5, 8, 38, 11, 41, 17}).

Observation. For a web access sequence S partitioned into S1, S2, ..., Sk, and
a web access sequence Q, we have: S contains Q if there exists a partitioning of
Q into Q1, Q2, ..., Qm, such that Q1 is contained in Si1 , Q2 is contained in Si2 ,
..., Qm is contained in Sim , and i1 < i2 < ... < im.

Our sequential index structure will consist of equivalent sets stored for all web
access sequences, optionally partitioned to reduce the complexity. To reduce
storage requirements, equivalent sets will be stored in database in the form of
bitmap signatures.



Optimizing Pattern Queries for Web Access Logs 147

Definition 5. The bitmap signature of a set X is an N -bit binary number
created, by means of bit-wise OR operation, from the hash keys of all data items
contained in X. The hash key of the item x ∈ X is an N -bit binary number
defined as follows: hash key(X) = 2(X mod n).

Example 5. For the set X = {0, 7, 12, 13}, N = 5, the hash keys of the set items
are the following:

hash key(0) = 2(0 mod 5) = 1 = 00001,
hash key(7) = 2(7 mod 5) = 4 = 00100,
hash key(12) = 2(12 mod 5) = 4 = 00100,
hash key(13) = 2(13 mod 5) = 8 = 01000.

The bitmap signature of the set X is the bit-wise OR of all items’ hash keys:
bitmap signature(X) = 00001 OR 00100 OR 00100 OR 01000 = 01101.

Observation. For any two sets X and Y , if X ⊆ Y then:
bitmap signature(X) AND bitmap signature(Y ) = bitmapsignature(X),

where AND is a bit-wise AND operator. This property is not reversible in gen-
eral (when we find that the above formula evaluates to TRUE we still have to
verify the result traditionally).

In order to plan the length N of a bitmap signature for a given average set
size, consider the following analysis. Assuming uniform items distribution, the
probability that representation of the set X sets k bits to ’1’ in an N -bit bitmap
signature is:

P =

(
N
k

)
fk,|X|

N |X| , where f0,|X| = 0, fq,|X| = q|X| −
q−1∑
i=1

(
q

i

)
fi,|X| (2)

Example probabilistic expected value of number of bits set to ’1’ for a 16-bit
bitmap signatures and various set sizes is illustrated in Fig. 5. We can observe
that e.g. for a set of 10 items, N should be greater than 8 (else we have all bits
set to 1 and the signature is unusable since it is always matched).

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25

set size

#b
its

Fig. 5. Number of bitmap signature bits set to ‘1’ for various set sizes (N=16)

The probability that a bitmap signature of the length N having k 1’s matches
another bitmap signature of the length N having m 1’s is

(
m
k

)
/
(
N
k

)
. It means



148 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

that the smaller k, the better pruning is performed during matching bitmap
signatures of item sets, in order to check their containment (so we have to verify
less item sets).

2.2 Sequential Index Construction Algorithm

The sequential index construction algorithm iteratively processes all web access
sequences in the database. First, the web access sequences are partitioned with
the given level β. Then, for each partition of each web access sequence, the equiv-
alent set is evaluated. In the next step, for each equivalent set, its N -bit bitmap
signature is generated and stored in the database. The formal description of the
algorithm is given below.

Input: database D of web access sequences, partitioning level β, bitmap length N

Output: sequential index for D

Method:
for each web access sequence S ∈ D do begin

partition S into partitions S1, S2, ..., Sk with level β;
for each partition Si do begin

evaluate equivalent set Ei for Si;
bitmapi = bitmap signature(Ei);
store bitmapi in the database;

end;
end.

Consider the following example of sequential index construction. Assume that
β=10, N=16, and the database D contains three web access sequences: S1 =
< {A, B}{C}{D}{A, F}{B}{E} >, S2 =< {A}{C, E}{F}{B}{E}{A, D} >,
S3 =< {B, C, D}, {A} >.

First, we partition the web access sequences with β=10. Notice that S3 is,
in fact, not partitioned since its equivalent set is small enough. The symbol Si,j

denotes j-th partition of the i-th web access sequence.

S1,1 =< {A, B}{C}{D} > (ordering relations are: A → C, B → C, A → D, B → D, C → D)

S1,2 =< {A, F}{B}{E} > (ordering relations are: A → B, F → B, A → E, F → E, B → E)

S2,1 =< {A}{C, E}{F} > (ordering relations are: A → E, A → C, E → F , C → F )

S2,2 =< {B}{E}{A, D} > (ordering relations are: B → E, B → A, B → D, E → A, E → D)

S3,1 =< {B, C, D}{A} > (ordering relations are: B → A, C → A, D → A)

Then we evaluate the equivalent sets for the partitioned web access sequences.
We use the example item mapping function and order mapping function taken
from the Definitions 1 and 2. The symbol Ei,j denotes the equivalent set for Si,j .

E1,1 = {1, 2, 3, 4, 9, 15, 10, 16, 22}
E1,2 = {1, 6, 2, 5, 8, 38, 11, 41, 17}
E2,1 = {1, 3, 5, 6, 11, 9, 36, 24}



Optimizing Pattern Queries for Web Access Logs 149

E2,2 = {2, 5, 1, 4, 17, 13, 16, 31, 36}
E3,1 = {2, 3, 4, 1, 13, 19, 25}

In the next step, we generate 16-bit bitmap signatures for all equivalent sets.

bitmap signature(E1,1) = 1000011001011111

bitmap signature(E1,2) = 0000101101100110

bitmap signature(E2,1) = 0000101101111010

bitmap signature(E2,2) = 1010000000110111

bitmap signature(E3,1) = 0010001000011110

Finally, the sequential index is stored in the database in the following form:

SID bitmap signature
1 1000011001011111, 0000101101100110
2 0000101101111010, 1010000000110111
3 0010001000011110

2.3 Using Sequential Index for Pattern Queries

During pattern query execution, the bitmap signatures for all web access se-
quences are scanned. For each web access sequence, the test of a searched sub-
sequence mapping is performed. If the searched subsequence can be successfully
mapped to the web access sequence partitions, then the web access sequence is
read from the database. Due to the ambiguity of bitmap signature representa-
tion, additional verification of the retrieved web access sequence is required. The
verification can be performed using the traditional B+-tree method, since it con-
sists in reading the web access sequence from the database and checking whether
it contains the searched subsequence. The formal description of the algorithm is
given below. We use a simplified notation of Q[i start..i end] to denote a par-
tition < Xi startXi start+1...Xi end > of a sequence Q =< X1X2...Xn >, where
1 ≤ i start ≤ i end ≤ n. The symbol & denotes bit-wise AND operation.

Input: sequential index, searched subsequence Q

Output: identifiers of web access sequences to be verified
Method:

for each sequence identifier sid do begin
j = 1;
i end = 1;
repeat

i start = i end;
evaluate equivalence set EQ for Q[i start..i end];
mask = bitmap signature(EQ);
while mask & bitmap signature(Esid,i) <> mask

and j ≤ number of partitions for sid do j++;
if j ≤ number of partitions for sid then repeat

i end++;
generate equivalence set EQ for Q[i start..i end];



150 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

mask = bitmap signature(EQ);
until mask & bitmap signature(Esid,i) <> mask

or i end = size of Q;
until i start = i end or j > number of partitions for sid;
if j ≤ number of partitions then return(sid);

end.

Consider the following example of using sequential index to perform pattern
queries. Assume that we look for all web access sequences, which contain the
subsequence < {F}{B}{D} >. We begin with sid=1. We find that < {F} >
(0000001000000000) matches the first partition (1111101001100001). So, we
check whether < {F}, {B} > (0010001000000000) also matches this partition.
Accidentally it does, but when we try < {F}, {B}, {D} > (1010101010000000),
we find that it does not match the first partition. Then we move to the second
partition to check whether < {D} > (00001000000000000) matches the parti-
tion (0110011011010000). This test fails and since we have no more partitions, we
reject sid=1 (this web access sequence does not contain the given subsequence).

In the next step, we check sid=2. We find that < {F} > (0000001000000000)
matches the first partition (0101111011010000). So, we check whether < {F},
{B} > (0010001000000000) also matches this partition. It does not, so we move
to the second partition and find that < {B} > (0010000000000000) matches
the partition (1110110000000101). Then we must check whether < {B}, {D} >
(1010100000000000) also matches the partition. This time the check is positive
and since we have matched the whole subsequence, we return sid=2 as a part of
the result. The web access sequence will be verified later.

Finally, we check sid=3. We find that < {F} > (0000001000000000) does
not match the first partition (0111100001000100). Since we have no more par-
titions, we reject sid=3 (this web access sequence does not contain the given
subsequence).

So far, the result of our index scanning is the web access sequence identified
by sid=2. We still need to read and verify, whether the sequence really contains
the searched subset. In our example it does, so the result is returned to the user.

2.4 Physical Storage

Since a sequential index is fully scanned each time a pattern query is per-
formed, it is critical to store it efficiently. We store index entries in the form
of < p, n, bitmap1, bitmap2, ..., bitmapn >, where p is a pointer to a web ac-
cess sequence described by the index entry, n is the number of bitmap signa-
tures, and bitmapi is a single bitmap signature for the web access sequence.
The pointer p should address the translation table, which contains pointers to
physical tuples of the relation holding the web access sequences (the structure
is < n, p1, p2, .., pn >). Since we usually have a B+-tree index on a sequence
identifier attribute (to optimize joins), we can use its leaves can as a translation
table instead of consuming database space by redundant structures. Example
storage implementation for the sequential index from Sect. 2.2 is given in Fig. 6.



Optimizing Pattern Queries for Web Access Logs 151

1000011001011111 0000101101100110 0000101101111010

1010000000110111 0010001000011110

2

...

SID TS L
1 1 A
1 1 B
1 2 C
1 3 D
1 4 A
1 4 F
1 5 B
1 6 E
2 1 A
2 2 C
2 2 E
2 3 F
2 4 B
2 5 E
2 6 A
2 6 D
3 1 B
3 1 C
3 1 D
3 2 A
...

2

1

8

8

4 ...

Sequential Index

Translation Table

Database Relation

Fig. 6. Example physical storage structure for sequential index

2.5 Update Operations

Maintenance of a sequential index is quite expensive, since bitmap signatures are
not reversible, and updates may influence partitioning of web access sequences.
For example, when we insert a new tuple into the database, thus extending
a web access sequence, we cannot determine what partition should the tuple
belong to. Similarly, when we delete a tuple, then both we cannot determine the
corresponding partition, and, even if we could do it, we do not know, whether
the item being deleted was the only item mapped to a given bit of the bitmap
signature (so we could reset the bit).

In order to have a consistent state of a sequential index, we must perform the
complete index creation procedure (partitioning, evaluating equivalent sets, gen-
erating bitmap signatures) for the web access sequence being modified. However,
since this solution might reduce DBMS performance for transaction-intensive
databases, we propose the following algorithm of offline maintenance for se-
quential indexes:

1. Whenever a new item is added to an existing web access sequence, we set to
’1’ all bits in the first bitmap signature for the web access sequence. It means
that any subsequence will match the first bitmap signature, and therefore we
will not miss the right one. Any false hits will be eliminated during actual
verification of subsequence containment.

2. Whenever an item is removed from an existing web access sequence, we do
not perform any modifications on the bitmap signatures of the web access
sequence. We may get false hits, but they will be eliminated during final
verification.

Notice that using the above algorithm, the overall index performance may de-
crease temporarily, but we will not get incorrect query results. Over a period of
time, the index should be rebuild either completely, or for updated web access
sequences only, e.g. according to a transaction log.



152 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

3 Experimental Results

We have performed several experiments on synthetic data sets to evaluate our
sequential indexing method. The database of web access sequences was generated
randomly, with uniform item distribution, and stored by Oracle8 DBMS. We
used dense data sets, i.e. the number of available items was relatively small,
and therefore each item occurred in a large number of web access sequences.
The web access sequences contained 1-item sets only (pessimistic approach -
maximal number of ordering relations).

Figure 7a shows the number of disk blocks (including index scanning and
relation access), which were read in order to retrieve web access sequences con-
taining subsequences of various lengths. The data set contained 50000 web access
sequences, having 20 items of 50 in average. The compared database accessing
methods were: traditional SQL query using B+-tree index on IP attribute (B+-
tree), 24-bit set-based bitmap index (24S), 32-bit sequential index with β = 28
built on top of 24-bit set-based bitmap index (24S32Q28), and 48-bit sequential
index with β = 55 built on top of 24-bit set-based bitmap index (24S48Q55).
Our sequential index achieved a significant improvement for the searched subse-
quences of length greater than 4, e.g. for the subsequence length of 5 we were over
20 times faster than the B+-tree method and 8 times faster than the set-based
bitmap index.

We also analyzed the influence of the partitioning level β value on the se-
quential index performance. Figure 7b illustrates the filtering factor (percentage
of web access sequences matched) for three sequential indexes built on bitmap
signatures of total size of 48 bits, but with different partitioning. We noticed
that partitioning web access sequences into a large number of partitions (small
β) results in performance increase for long subsequences, but worsens the per-
formance for short subsequences. Using a small number of web access sequence
partitions (high β) results in more ”stable” performance, but the performance
is worse for long subsequences.

a)

0

100000

200000

300000
400000

500000

600000

700000

800000

2 3 4 5 6 7 8 9 10 11 12 13

subsequence size

bl
oc

ks
re

ad B+ tree

24S

24S32Q28

24S48Q55

b)

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

subsequence size

se
qu

en
ce

s
ac

ce
pt

ed

210
55
15

48 bits/sequence
items: 50
avg. length: 20

Fig. 7. Experimental results



Optimizing Pattern Queries for Web Access Logs 153

4 Final Conclusions

Pattern queries on web access logs are specific in the sense that they require
complicated SQL queries and database access methods (multiple joins, ineffi-
cient optimization). In this paper we have presented the new indexing method,
called sequential indexing, which can replace a B+-tree indexing and set-based
indexing. During experiments, we have found that the most efficient solution is
to combine a set-based index (which checks items of a web access sequence) with
a sequential index (which checks the items ordering), what results in dramatic
outperforming B+-tree access methods.

References

1. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf.
(1995)

2. Bayardo R.J.: Efficiently Mining Long Patterns from Databases. Proc. of the ACM
SIGMOD International Conf. on Management of Data (1998)

3. Bentley J.L.: Multidimensional binary search trees used for associative searching.
Comm. of the ACM 18 (1975)

4. Catledge L.D., Pitkow J.E.: Characterizing Browsing Strategies in the World Wide
Web. Proc. of the 3rd Int’l WWW Conference (1995)

5. Comer D.: The Ubiquitous B-tree. Comput. Surv. 11 (1979)
6. Cooley R., Mobasher B., Srivastava J.: Data preparation for mining World Wide

Web browsing patterns. Journal of Knowledge and Information Systems 1 (1999)
7. Cooley R., Mobasher B., Srivastava J.: Grouping Web Page References into Trans-

actions for Mining World Wide Web Browsing Patterns. Proc. of the 1997 IEEE
Knowledge and Data Engineering Exchange Workshop (1997)

8. Diamantini C., Panti M.: A Conceptual Indexing Method for Content-Based Re-
trieval. Proc. of the 15th IEEE Int’l Conf. on Data Engineering (1999)

9. Guralnik V., Wijesekera D., Srivastava J.: Pattern Directed Mining of Sequence
Data. Proc. of the 4th KDD Conference (1998)

10. Guttman A.: R-trees: A dynamic index structure for spatial searching. Proc. of
ACM SIGMOD International Conf. on Management of Data (1984)

11. Luotonen A.: The common log file format. http://www.w3.org/pub/WWW/ (1995)
12. Mannila H., Toivonen H.: Discovering generalized episodes using minimal occur-

rences. Proc. of the 2nd KDD Conference (1996)
13. Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in sequences.

Proc. of the 1st KDD Conference (1995)
14. Morzy T., Zakrzewicz M.: Group Bitmap Index: A Structure for Association Rules

Retrieval. Proc. of the 4th KDD Conference (1998)
15. O’Neil P.: Model 204 Architecture and Performance. Proc. of the 2nd International

Workshop on High Performance Transactions Systems (1987)
16. Perkowitz M., Etzioni O.: Adaptive Web Sites: an AI challenge. Proc. of the 15th

Int. Joint Conf. AI (1997)
17. Pirolli P., Pitkow J., Rao R.: Silk From a Sow’s Ear: Extracting Usable Structure

from the World Wide Web. Proc. of Conf. on Human Factors in Computing Systems
(1996)

18. Pitkow J.: In search of reliable usage data on the www. Proc. of the 6th Int’l
WWW Conference (1997)



154 T. Morzy, M. Wojciechowski, and M. Zakrzewicz

19. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. Proc. of the 5th EDBT Conference (1996)

20. Yan T.W., Jacobsen M., Garcia-Molina H., Dayal U.: From User Access Patterns
to Dynamic Hypertext Linking. Proc. of the 5th Int’l WWW Conference (1996)



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 155-168, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

Ensemble Feature Selection Based on Contextual Merit 
and Correlation Heuristics1 

Seppo Puuronen, Iryna Skrypnyk, and Alexey Tsymbal 

Department of Computer Science and Information Systems, University of Jyväskylä 
P.O. Box 35, FIN-40351 Jyväskylä, Finland 
{sepi,iryna,alexey}@cs.jyu.fi 

Abstract. Recent research has proven the benefits of using ensembles of 
classifiers for classification problems. Ensembles of diverse and accu-
rate base classifiers are constructed by machine learning methods ma-
nipulating the training sets.  One way to manipulate the training set is to 
use feature selection heuristics generating the base classifiers. In this 
paper we examine two of them: correlation-based and contextual merit 
-based heuristics. Both rely on quite similar assumptions concerning 
heterogeneous classification problems. Experiments are considered on 
several data sets from UCI Repository. We construct fixed number of 
base classifiers over selected feature subsets and refine the ensemble it-
eratively promoting diversity of the base classifiers and relying on 
global accuracy growth. According to the experimental results, contex-
tual merit -based ensemble outperforms correlation-based ensemble as 
well as C4.5. Correlation-based ensemble produces more diverse and 
simple base classifiers, and the iterations promoting diversity have not 
so evident effect as for contextual merit -based ensemble. 

1 Introduction 

Machine learning research has progressed in many directions. One of those directions 
still containing a number of open questions is the construction and use of an ensemble 
of classifiers. Ensembles are well established as a method for obtaining highly accu-
rate combined classifiers by integrating less accurate base classifiers.  

Many methods for constructing ensembles have been developed. They can be di-
vided into two main types: general methods and methods specific to a particular 
learning algorithm. Amongst successful general ones are sampling methods, and 
methods manipulating either the input features or the output targets. We apply the 
second type of method when ensemble integration is made using weighted voting.  

The goal of traditional feature selection is to find and remove features that are un-
helpful or destructive to learning in order to construct a single classifier [4]. Since an 
                                                           
1  This research is partially supported by the Academy of Finland (project #52599), the Centre 

for International Mobility (CIMO) and the COMAS Graduate School of the University of 
Jyväskylä. 



156        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

ensemble of classifiers represents multiple inference models, it can produce different 
inference models in different sub areas of the instance space. Feature selection heuris-
tics are used to assist in guiding the process of constructing base classifiers imple-
menting those models. In addition to decreasing the number of features, ensemble 
feature selection has an additional goal of finding multiple feature subsets to produce 
a set of base classifiers promoting disagreement among them [15].   

This paper continues our research in ensemble feature selection [18,20]. We have 
developed an algorithm with an iterative refinement cycle. This cycle provides feed-
back to ensemble construction in order to improve ensemble characteristics with 
selected feature selection heuristics. In this paper we examine two feature selection 
heuristics for ensemble creation applying also the refinement cycle. 

For our study we chose two heuristics for feature selection that have an ability to 
treat complex interrelations between features, namely contextual merit-based heuristic 
and correlation-based heuristic [1,7,9,16]. Interrelations between features that are 
assumed in those heuristic might be a consequence of the fact, that some domains 
contain features varying in importance across the instance space [1,7,10,12,16]. This 
situation, called feature-space heterogeneity, is wide spread for real data sets. Hetero-
geneity in data becomes critical, because most classification algorithms fail to make 
accurate predictions. 

We compare correlation-based and contextual merit -based heuristic on several 
data sets from UCI repository and make some conclusions about the use of those 
heuristics for ensemble feature selection. Particularly, we observe co-ordination of 
feature selection heuristics and internal design of the refinement cycle. 

In Chapter 2 we consider the basic framework of ensemble classification. Chapter 
3 describes the Contextual Merit measure (CM measure) and correlation-based merit 
measure. Chapter 4 presents brief description of the algorithm for ensemble feature 
selection with the iterative refinement cycle. In Chapter 5 our experimental study on 
several data sets is described. We summarize with conclusions in Chapter 6. 

2 Ensemble Classification 

In supervised learning, a learning algorithm is given training instances of the form 
{(x1, y1), …, (xM, yM)} for some unknown function y = g(x), where xi values are vec-
tors of the form �xi,1, …, xi,j, …, xi,N �, where xi,j are feature values of xi, and M is the 
size of the training set T. In this paper we will refer to features as fj, j = 1…N, where 
N is the number of features. Given a set of training instances T, a learning algorithm 
outputs a classifier h, which is a hypothesis about the true function g. Given new x 
values, it predicts the corresponding y values. In ensemble classification (Fig. 1) a set 
of base classifiers h1, …, hS, where S is the size of the ensemble is formed during the 
learning phase.  

Each base classifier in the ensemble (classifiers h1 … hS in this case) is trained us-
ing training instances of the corresponding training set Ti, i = 1, …, S. In this paper 
we form the training sets T1, …, TS as the subsets of features using feature selection 
heuristics. For the ensemble classification the classifications of the base classifiers are 



 Ensemble Feature Selection Based on Contextual Merit and Correlation Heuristics         157 

 

combined during the application phase in some way h* = F(h1, h2, …, hS) to produce 
the final classification of the ensemble. In this paper the final classification y* is 
formed using weighted voting [2,3,5,8]. 

 

T 

T1 T2 …  TS 

Learning 
phase 

Application 
phase 

(x, ?) h* = F(h1, h2, … , hS) 

(x, y*) 

h1 h2 …  hS 

 

Fig. 1. Ensemble classification process 

Research has shown that an effective ensemble should consist of a set of base clas-
sifiers that not only have high accuracy, but also make their errors on different parts 
of the input space as well [5,14].  

Combining the classifications of several classifiers is useful only if there is dis-
agreement among the base classifiers, i.e. they are independent in the production of 
their errors. The error rate of each base classifier should not exceed a certain limit. 
Otherwise, the ensemble error rate will usually increase as a result of combination of 
their classifications [5]. The measure of independence of the base classifiers is called 
the diversity of an ensemble. Several ways to calculate the diversity are considered in 
[6,15,17]. 

3 Heuristics for Ensemble Feature Selection 

In this chapter we consider two heuristics for feature selection, namely the contextual 
merit measure and correlation-based merit measure which are intended to treat fea-
ture-space heterogeneity in classification problems [1]. Both of them are independent 
on the learning algorithm. 

3.1  Contextual Merit Measure  

The main assumption of CM measure, which was developed in [9] is that features 
important for classification should differ significantly in their values to predict in-
stances from different classes. The CM measure is robust to both problems of class 



158        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

heterogeneity and feature-space heterogeneity. The CM measure assigns a merit value 
to a feature taking into account the degree to which the other features are capable to 
discriminate between the same instances as the given feature. In an extreme situation, 
when two instances of different classes differ in only one feature than that feature is 
particularly valuable for classification and it is assigned additional merit. 

We use the CM measure as it has been presented in [9] and described below. Let 

the difference 
)(

,
j

ki

f
d xx between the values of a categorical feature fj for the vectors xi and 

xk be  

�
.otherwise 1,

samearevaluestheif,0)(

,

j

ki

f
d xx  

(1) 

and between the values of a numeric feature fj correspondingly be  

� �1,xxmin ,,
)(

x,x j

j

ki fjkji
f td ��  (2) 

where xi,j is the value of the feature fj in the vector xi, and 
jft  is a threshold. In this 

paper it is selected to be one-half of the range of the values of the feature fj. 

Then the distance 
ki

D xx ,
between the vectors xi and xk is 

�
�

�
N

j

f j

kiki
dD

1

)(
,, xxxx  

(3) 

where N is the number of features. The value of CM measure 
jfCM of a feature fj is 

� �
� �

�
M

i C

ff
f

ik

j

ki

j

kij
dwCM

1 )(

)(
,

)(
,

xx
xxxx  

(4) 

where M is the number of instances, � �iC x  is the set of vectors not from the same 

class as the vector xi, and )(
,
j

ki

fw xx  is a weight chosen so that instances that are close to 

each other, i.e., that differ only in a few of their features, have greater influence in 

determining each feature's CM measure value. In [9] weights )(
,
j

ki

f
w xx  = 2

,/1
ki

D xx were 

used when xk is one of the K nearest neighbors of xi, in terms of
ki

D xx , , in the set 

� �iC x , and )(
,
j

ki

f
w xx = 0 otherwise. The number of nearest neighbors k used in [9] was 

the binary logarithm of the number of examples in the set � �iC x . 

3.2  Correlation-Based Merit Measure 

Correlation-based approach is the other widespread approach to estimate interrela-
tions between features, or features and the class variable. It uses the Pearson’s 
correlation coefficient as a measure of linear dependence between two variables. Such 
kind of dependence is quite common in real world situations. 



 Ensemble Feature Selection Based on Contextual Merit and Correlation Heuristics         159 

 

Many researchers have used the correlation-based approach to estimate the good-
ness of feature subsets. For example, [16,21] used correlation between particular 
feature and particular class, and features with highest correlation were selected to 
construct a classifier for that class separately producing different models for different 
classes. We will estimate the goodness of feature subset as it was done in [7]. The 
correlation -based merit measure will be calculated not for a particular feature, but for 
a particular feature subset. In that way we will be able to consider interrelations be-
tween features in the subset, too. The basic assumption for this heuristic is as follows. 
Good feature subsets contain features highly correlated with the class, yet uncorre-
lated with each other. The correlation coefficient 

kj ffr between two numerical features 

fj and fk is calculated using the formula (5). 

 
SS

S
r

kj

kj

ff

ff�  
(5) 

where 
kj ffS is a sample covariance between features fj and fk, and 

jfS and 
kf

S are sam-

ple standard deviations for features fj and fk correspondingly. 
According to [7] we calculate the merit of a feature subset MF  with the formula 

(6). 

 
� � rnnn

rn
M

kj

j

ff

yf

F
1��

�  
(6) 

where F is a feature subset containing n features, y is a class variable, r yf j
 is the 

mean feature-class correlation (fj �  F), and r kj ff  is the average feature-feature inter-

correlation. The numerator in formula (6) gives an indication of how predictive for 
the class the subset of features is, and the denominator expresses how much redun-
dancy there exist. Formula (5) is suitable only for the case of numeric variables. For 
categorical values binarization is used. 

Let fj be a categorical feature having t values v1, …, vt. We form t binary attributes 
i
jf , i = 1, …, t so that 1�i

jf , when fj = vi and 0�i
jf otherwise. The correlation 

between the categorical feature fj and the numeric feature fk is then calculated using 
the formula (7). 

� �
k

i
jkj ff

t

i
jjff rfpr �� � v  

(7) 

Let fj be a categorical feature having t values v1, …, vt and fk be a categorical feature 

having l values u1, …, ul. The binary attributes i
jf , i= 1, …, t and q

kf , q = 1, …, l are 

formed as described above. The correlation between these two categorical features is 
then calculated using the formula (8). 



160        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

� � q
k

i
jkj ff

l

q
qkij

t

i

ff rffpr ��� �� u,v  
(8) 

In addition, the two formulae above are robust to missing values [7]. 

4 An Algorithm for Ensemble Feature Selection 

In this chapter we present an overview of our algorithm EFS_ref  for ensemble fea-
ture selection with the iterative refinement cycle. An algorithm for ensemble feature 
selection with contextual merit-based heuristic was considered in detail also in [18]. 
In this paper we extend it to the correlation-based heuristic, too. For the two heuristics 
the algorithm constructs an ensemble of a fixed number of base classifiers over se-
lected feature subsets. The number of base classifiers in both ensembles is the number 
of different classes among the instances of the training set. The objective is to build 
each base classifier on the feature subset including features most relevant for distin-
guishing the corresponding class from the others. It is necessary to note that in this 
algorithm the base classifiers are still not binary, but distinguish the whole number of 
classes present in the data set. Each base classifier of the initial ensemble is based on 
a fixed number of features with the highest value of the CM measure for the corre-
sponding class, or with the highest correlation-based measure correspondingly. The 
initial ensemble is iteratively modified trying to change the number of features one by 
one for the less diverse base classifiers suggesting exclusions or inclusions of fea-
tures. With the correlation-based measure candidate feature subsets for new base 
classifiers are formed using forward inclusion procedure. The iterations are guided by 
the diversity of classifiers and the value of the CM measure, or correlation-based 
merit measure depending on the heuristic used.  

For our algorithm we use the diversity measure calculated as an average difference 
in predictions between all pairs of classifiers. The diversity is calculated similarly as 
in [17] where it was used as a measure of independence of the base classifiers. The 
modified formula to calculate the approximated diversity Divi of a classifier hi is (9). 

� � � �� �
� �1

,
1 ,1

�
�
� � � ��

SM

hhDif
Div

M

j

S

ikk jkji

i

xx
 

(9) 

where S denotes the number of the base classifiers, hi(xj) denotes the classification of 
the vector xj by the classifier hi, and Dif(a,b) is zero if the classifications a and b are 
same and one if they are different, and M is the number of instances in the test set. 
The diversity of an ensemble is calculated as the average diversity of all the base 
classifiers (10). 

S

Div
Div

S

i i� �� 1  
(10) 



 Ensemble Feature Selection Based on Contextual Merit and Correlation Heuristics         161 

 

The CM measure is calculated as in [9] and described in Sect. 3.1.  The correlation 
measure is calculated as described in Sect. 3.2. 

Our algorithm is composed of two main phases: 1) the construction of the initial 
ensemble and 2) the iterative development of new candidate ensembles. Let DS be a 
data set including instances {(x1, y1),…, (xM, yM)}, where xi = �xi,1, …, xi,N� is the 
vector including the values of each of the N features. The main outline of our algo-
rithm is presented below. 

Algorithm EFS_ref(DS) 

DS  the whole data set 
TRS  training set 
VS  validation set used during the iterations 
TS  test set 
Ccurr  the current ensemble of base classifiers 
Accu  the accuracy of the final ensemble 
FS  set of feature subsets for base classifiers 
Threshold Threshold value used to select the features for the 

initial ensemble 

begin 
 divide_instances(DS,TRS,VS,TS) {divides DS into TRS,   
  VS, and TS using stratified random sampling} 
 for Heuristic� {CM,Corr}  
    Ccurr=build_initial_ensemble(Heuristic,TRS,FS, 

    Threshold) 
    loop 
       cycle(Heuristic,TRS,Ccurr,FS,VS) 
       {developes candidate ensembles and updates 
       Accu,Ccurr,and FS when necessary} 

    until no_changes 
    Accu=accuracy(TS,Ccurr) 
 end for 
end algorithm EFS_ref 

______________________________________________________ 

In the EFS_ref algorithm ensembles are generated in two places, the initial ensembles 
are generated using a different procedure than the generation of the new candidate en-
sembles that is included in the procedure cycle. One of the two initial ensembles is con-
structed using CM-based merit values and the other one using correlation-based merit 
values. In all cases the features with the highest normalized merit values up to the thresh-
old are selected and the base classifiers are built using the C4.5 learning algorithm. The 
threshold is fixed (� {0.1,0.2,…,0.9}) in advance so that the accuracy of the ensemble 
over the training set is the highest one with the weighted voting. The main outline of the 
initial ensemble algorithm is presented below. The threshold value is used to cut the 
interval of merit values in order to select the features. For example the threshold value 
0.1 means that only those features whose merit values are in the interval of the highest 
10% of the whole interval of the merit values are selected. 

 
build_initial_ensemble(Heuristic,TRS,FS,Threshold) 

L  number of classes and number of base classifiers 
begin  
 Ensemble= ;FS=  



162        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

 for i from 1 to L 
  MERITS[i]=calculate_merits(Heuristic,TRS,i)  
  {feature merits for class i} 

 FS[i]=select_features(MERITS,Threshold){selects  
 features with the highest merits using threshold} 

  C[i]=C4.5(TRS,FS[i]){learns classifier i}   
  Ensemble=Ensemble!C[i];FS=FS!FS[i] 
 end for 
end build_initial_ensemble=Ensemble 

______________________________________________________ 

The iteration mechanism used in this paper changes one base classifier in each it-
eration. The base classifier with the smallest diversity is taken as the potential classi-
fier to be changed. For the potential classifier, one feature is tried to be added or de-
leted from the subset of features that was used to train the classifier. The feature is 
selected using the merit value. The outline of the iteration algorithm is described 
below. 

cycle(Heuristic,TRS,Ccurr,FS,VS) 

begin 
loop 
 for i from 1 to L 
  DIV[i]=calculate_diversities(TRS,Ccurr)  
 end for   

  Cmin= argmin DIV[i] 
  NewCcurr=Ccurr\C[Cmin];NewFS=FS 

  MERITS[Cmin]=calculate_merits(Heuristic,TRS,Cmin) 
  NewFS[Cmin]=FS[Cmin]\feature with min MERITS[Cmin] 
   included in FS[Cmin] 
  NewCcurr=NewCcurr!C4.5(TRS,NewFS[Cmin]) 
  if accuracy (VS,NewCcurr)>=accuracy(VS,Ccurr) 

     then Ccurr=NewCcurr; FS=NewFS 
     else no changes to Ccurr and FS  
until no change 
loop 
 for i from 1 to L  
  DIV=calculate_diversities(TRS,Ccurr)  
 end for 

  Cmin= argmin DIV[i] 
  NewCcurr=Ccurr\C[Cmin];NewFS=FS 

  MERITS[Cmin]=calculate_merits(Heuristic,TRS,Cmin) 
  NewFS[Cmin]=FS[Cmin]!feature with max MERITS[Cmin]  
   not included in FS[Cmin] 
  NewCcurr=NewCcurr!C4.5(TRS,NewFS[Cmin]) 
  if accuracy (VS,NewCcurr)>=accuracy(VS,Ccurr) 

     then Ccurr=NewCcurr; FS=NewFS 
     else no changes to Ccurr and FS  
until no change 

end cycle 
_________________________________________________________ 

The iteration mechanism is composed of two loops. Both loops try to replace one 
base classifier at a time. The base classifier, which is tried to be replaced is the one 
with the lowest diversity value. When the classifier to be changed has been selected, 
one feature is either added (second loop) or deleted (first loop) from the subset of 



 Ensemble Feature Selection Based on Contextual Merit and Correlation Heuristics         163 

 

features that was used to train the classifier. The feature suggested to be added or 
deleted is selected using merit value of the corresponding heuristic. The accuracy of 
the previous ensemble is compared with the accuracy of the changed ensemble and the 
change is accepted if the first one is not higher. Both loops end when there were no 
changes accepted during the whole cycle.  

5 Experiments 

In this chapter, experiments with our algorithm for generation of an ensemble of 
classifiers built on different feature subsets are presented. First, the experimental 
setting is described, and then, results of the experiments are presented. The experi-
ments are conducted on ten data sets taken from the UCI machine learning repository 
[13]. These data sets were chosen so as to provide a variety of application areas, sizes, 
combinations of feature types, and difficulty as measured by the accuracy achieved 
on them by current algorithms.  

For each data set 30 test runs are made. In each run the data set is first split into the 
training set and two test sets by stratified random sampling keeping the class distribu-
tion of instances in each set approximately the same as in the initial data set. The 
training set (TRS) includes 60 percent of instances and the test sets (VS and TS) both 
20 percent of instances. The first test set, VS (validation set) is used for tuning the 
ensemble of classifiers, adjusting the initial feature subsets so that the ensemble accu-
racy becomes as high as possible using the selected heuristic. The other test set, TS is 
used for the final estimation of the ensemble accuracy. The base classifiers them-
selves are learnt using the C4.5 decision tree algorithm with pruning [19] and the test 
environment was implemented within the MLC++ framework [11]. 

Our aim is to analyze the contribution of the iterative refinement cycle for the CM- 
and correlation-based ensembles, and then compare their accuracy with C4.5 accu-
racy. We also examine which of two feature selection heuristics produces more di-
verse and more accurate ensembles. 

Table 1. Accuracies (%) of the CM-based and correlation-based ensembles, and C4.5 

CM -based Correlation -based 
Data set 

before after threshold before after threshold 
C4.5 

Car 86.6 87.9 0.5 86.0 86.8 0.6 87.9 
Glass 64.8 65.2 0.1 65.7 66.0 0.3 62.6 
Iris 94.6 94.3 0.9 94.1 94.2 0.7 93.9 
LED_17 64.4 64.6 0.1 59.5 62.1 0.4 65.0 
Lymph 76.4 75.3 0.5 74.0 73.6 0.6 74.2 
Thyroid 91.4 92.7 0.6 93.4 93.1 0.3 92.8 
Wine 93.5 93.5 0.2 92.3 93.4 0.7 92.9 
Waveform 73.0 74.2 0.2 74.3 74.2 0.5 72.2 
Vehicle 67.0 67.3 0.1 67.6 68.1 0.5 68.7 
Zoo 92.2 93.5 0.1 87.0 88.1 0.5 92.4 

We collected accuracies (Table 1) and diversities (Table 2) for these two ensem-
bles on each data set before and after iterations marking the corresponding columns 
as CM_b and CM_a for CM-based ensemble, and CR_b and CR_a for correlation-



164        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

based ensemble. Thresholds used for each data set are presented in the corresponding 
columns for CM-based and correlation-based ensembles.  

Table 2. Diversities of the base classifiers before and after iterations for the CM-based and 
correlation-based ensembles 

Data set 
Average diversity of the base classifiers, 

(before and after iterations) 

Diver-
sity 
diff. 

   
Fea-
tures 

Aver 
num of 
select. 
feat. 

Aver 
num of 
itera-
tions 

CM_b 12.6 12.3 15.9 16.2 
CM_a 24.5 20.5 20.2 21.1 

7.3 4.225 1.5 

CR_b 13.6 13.6 17.2 16.8 
Car 

CR_a 27.3 23.5 19.3 18.8 
6.925 

5 
3.217 1.6 

CM_b 20.8 21.7 24.1 28.2 35.6 32.0 
CM_a 33.0 31.6 32.1 35.1 41.4 36.2 

7.5 4.611 1.367 

CR_b 30.4 44.8 31.4 31.3 40.5 28.8 
Glass 

CR_a 35.6 46.1 35.1 35.3 42.0 34.2 
3.52 

9 
3.328 1.3 

CM_b 3.6 1.8 1.9 
CM_a 5.7 3.3 3.8 

1.83 1.356 1.067 

CR_b 22.3 44.4 22.3 
Iris 

CR_a 24.2 45.2 23.3 
1.23 

4 
1.678 1 

CM_b 24.6 39.8 34.5 24.2 24.2 21.8 23.9 30.6 34.2 21.4 
CM_a 31.3 44.0 36.5 31.7 32.7 30.5 30.5 35.4 37.0 27.7 

5.81 22.367 1.5 

CR_b 58.3 59.5 73.5 57.7 82.2 66.6 62.3 63.9 55.0 54.1 
LED_17 

CR_a 60.3 60.6 73.9 60.5 81.8 68.5 62.7 66.2 56.7 55.2 
1.35 

24 
4.533 1.6 

CM_b 18.8 15.1 17.7 16.3 
CM_a 28.3 22.2 24.0 24.4 

7.75 6.625 1.6 

CR_b 25.1 21.4 21.0 38.2 
Lymph 

CR_a 27.9 24.6 24.2 38.9 
2.475 

18 
5.35 1.267 

CM_b 6.2 6.4 9.3 
CM_a 9.3 8.5 10.6 

2.17 1.844 1.4 

CR_b 14.7 12.4 11.8 
Thyroid 

CR_a 15.8 13.8 12.9 
1.2 

5 
2.944 1.2 

CM_b 24.6 23.1 24.6 24.6 
CM_a 29.8 28.7 27.1 27.8 

3.875 12.258 1.5 

CR_b 39.1 43.0 45.5 43.5 
Vehicle 

CR_a 40.4 43.7 46.0 44.4 
0.85 

18 
6.492 1.433 

CM_b 16.7 15.7 17.5 
CM_a 18.8 17.7 17.8 

1.43 6.7 1.3 

CR_b 16.2 18.9 16.6 
Wine 

CR_a 19.7 21.8 19.4 
3.07 

12 
3.944 1.3 

CM_b 18.8 21.5 19.7 
CM_a 22.8 24.4 23.8 

3.67 17.611 1.267 

CR_b 40.3 39.0 38.8 
Wave-
form 

CR_a 41.4 40.0 40.1 
1.33 

21 
8.289 1.467 

CM_b 12.6 13.2 12.3 13.9 14.2 13.8 11.9 
CM_a 15.7 15.9 14.9 16.3 17.0 15.3 14.8 

2.57 13.252 1.2 

CR_b 37.5 32.9 37.1 44.0 40.3 34.1 30.2 
Zoo 

CR_a 39.5 36.1 39.8 44.3 42.2 36.9 35.9 
2.66 

16 
3.867 1.367 

 
In Table 2 for each data set the diversities of all base classifiers are presented. In 

the sub-columns of the second column diversities of the base classifiers are presented. 
The number of the base classifiers is equal to the number of classes for each data set. 
In the third column the average difference of diversity before and after iteration is 
recorded. The forth column represents the number of features in corresponding data 



 Ensemble Feature Selection Based on Contextual Merit and Correlation Heuristics         165 

 

set, and the fifth column show the number of features used to construct the base classi-
fiers. The last column presents the average number of iterations in the refinement 
cycle.  

In order to make conclusions following our aims from data tables above we calcu-
lated statistics in Table 3. We applied the paired sign test in order to estimate the 
number of wins, looses, and ties for each pair of compared classification results, and 
the paired t-test in order to conclude if the difference was statistically significant. The 
paired t-test is more strict than the sign test, but it assumes that population follows the 
Gaussian distribution. We calculated statistics for both tests over 30 runs, and tested if 
the distribution is normal using standardized skewness and standardized kurtosis.2 
The second and third columns in Table 3 represent statistics for comparison of two 
heuristic-base ensembles before and after iterations. The forth and fifth columns 
summarize the difference in accuracy before and after iterations for CM-based and 
correlation-based ensembles. The sixth and seventh columns represent statistics for 
comparison of both heuristic-based ensembles after refinement cycle versus the C4.5 
algorithm. The sub-columns indicate trial for the sign test, and P value for the paired 
t-test. Negative results of normal distribution test are outlined. Both statistical tests 
have been done using 95% confidence interval. Average calculations in the last row 
of the table have been done over ten data sets using their average accuracy from Ta-
ble 1.  

Table 3. Comparisons of the accuracies obtained by CM-based and correlation-based ensem-
bles, and the accuracies of C4.5 by the sign test and the paired t-test 

CM_b vs CR_b CM_a vs CR_a CM_a vs CM_b CR_a vs CR_b CM_a vs C4.5  CR_a vs C4.5  
Data set 

win, tie, 
loose 

P value 
2-tailed 

win, tie, 
loose 

P value 
2-tailed 

win, tie, 
loose 

P value 
1-tailed 

win, tie, 
loose 

P value 
1-tailed 

win, tie, 
loose 

P value 
2-tailed 

win, tie, 
loose 

P value
2-tailed 

Car 16,2,12 0.1052 19,3,8 0.0136 20,5,5, 0.0001  20,4,6 0.0013 11,6,13 1.0000  5,5,20 0.0009 

Glass 10,5,15 0.5249 12,5,13 0.4998 9,14,7 0.2933  12,14,4 0.3048  19,6,5 0.0156  21,3,6 0.0021 

Iris 6,19,5 0.3219 5,19,6 0.8455 2,26,2 0.2244  3,25,2 0.1862  6,21,3 0.3544  5,23,2 0.2591 

LED_17 19,7,4 <0.0001 16,4,10 0.0376 8,14,8 0.4083  19,9,2 <0.0001 11,5,14 0.4872  7,1,22 0.0033 

Lymph 14,7,9 0.0876 14,6,10 0.1152 8,12,10 0.1669  6,18,6 0.2930  16,4,10 0.2833  8,11,11 0.4999 

Thyroid 7,6,17 0.0018 7,16,7 0.4171 16,11,3 0.0011  6,19,5 0.2339  10,12,8 0.7375  11,13,6 0.5634 

Vehicle 14,2,14 0.4682 12,2,16 0.2175 14,7,9 0.2106  12,10,8 0.1732  8,4,18 0.0138  13,2,15 0.3385 
Wave-
f

12,0,18 0.0524 13,0,17 0.9717 18,8,4 0.0015 9,13,8 0.6606 23,2,5 0.0003 23,1,6 0.0008 

Wine 13,8,9 0.2080 12,6,12 0.9250 4,18,8 0.4976  8,18,4 0.0655  11,10,9 0.3918  13,7,10 0.4832 

Zoo 26,2,2 <0.0001 25,3,2 <0.0001 9,18,3 0.0290 12,14,4 0.0814  8,17,5 0.1653  2,6,22 <0.000
1

Average 6,0,4 0.2356 6,1,3 0.1760 7,1,2 0.0898 7,0,3 0.1719 6,1,3 0.1457 5,0,5 0.6777 

Trial “win, tie, loose” for example, in comparison of CM-based ensemble before 
and after iterations (CM_a versus CM_b) for Car data set means that in 20 cases of 30 
CM_a has higher accuracy, in 5 cases accuracies are comparable, and in 5 cases accu-
racy was higher for CM_b. Small P value means that it is unlikely that the effect of 
iterations is due to a coincidence of random sampling of 30 runs from the overall 

                                                           
2  Values of these statistics outside the range of –2 to +2 indicate significant abnormality, 

which would tend to invalidate any statistical test regarding the standard deviation, and the 
paired t-test in our case. 



166        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

population. If P value is < 0.05 the observed effect is statistically significant. Large P 
value in some cases do not give us any reason to conclude that some effect has a 
place, as far as we can not observe it on current data sample. In order to compare the 
effect of iterations the one-tailed t-test is used since we can assume that accuracy after 
refinement tend to be higher than before refinement. Corresponding P value rejects or 
accepts hypothesis about the effect of the cycle. Comparing heuristic-based ensem-
bles versus C4.5 as well as CM-based ensemble versus correlation-based we cannot 
predict in advance the accuracy trend. That is why for these cases two-tailed P value 
is used indicating presence of statistically significant difference in accuracy. Which 
algorithm outperforms can be seen from the sign test trial.  

First, let us compare two heuristic-based ensembles. On average, CM_b outper-
forms CR_b 6 times according to the sign test. The benefits of CM_b are confirmed 
as statistically significant for LED_17 and Zoo. CM_b is a few more better than 
CR_b on Lymph, Wine, and Car. However, according to the t-test for Thyroid superi-
ority of CR_b is statistically significant. On Glass and Waveform CR_b is a few more 
better as well.3 Both ensembles CM_b and CR_b, as well as CM_a and CR_a on Iris 
data set reached the highest accuracy, and the lowest accuracy on LED_17 data set.  

After iterations CM_a still outperforms CR_a in 6 cases, in one case they are com-
parable, and in 3 cases CR_a is better than CM_a. CM_a gives statistically significant 
superiority in accuracy than CR_a for Car, LED_17 and Zoo, and a few smaller supe-
riority on Lymph data set. CM_b and CM_a are almost comparable on Wine data set. 

Thus, we can conclude that CM-based ensembles are more accurate than correla-
tion-based ensembles. However, CR_b in the most of cases produces more diverse 
initial classifiers, especially for Glass, Iris, LED_17, Thyroid, Vehicle, Waveform, 
and Zoo. Diversity of CM_b and CR_b is almost comparable for Wine data set only. 
After iterations diversities smooth out for Glass, Lymph, and Wine. In general, the 
iterations resulted in larger increase for CM-based ensemble. The advantage of corre-
lation-based ensemble is revealed in small number of features on which the base 
classifiers are constructed. It is clearly seen for LED_17, Vehicle, Wine, Waveform, 
and Zoo data sets. The number of iterations is the other important item for compari-
sons. We can observe that for 5 data sets CM-based ensemble, in average, made more 
iterations, for 1 data set the average numbers of iterations are equal, and on 4 data sets 
correlation-based ensemble made more iterations. 

Let us analyze now the contribution of iterative refinement cycle intended for in-
crease of diversity and accuracy in ensemble. Diversity was increased over all data 
sets on 1-7%. Accuracy was increased with both heuristic-based ensembles approxi-
mately on 1-2%. For CM-based ensemble the effect of iterations is statistically sig-
nificant on Car, Thyroid, Waveform, and Zoo. Sometimes overfitting can take place4, 
as in this case for Iris and Lymph, and with correlation-based iteration for Thyroid 
and Waveform data sets. Improvement in accuracy for correlation-based ensemble is 

                                                           
3  The situation can be found out slightly differing from Table 1 inasmuch as this table in-

cludes accuracies averaged over 30 runs. 
4  The accuracies are calculated using the evaluation set, and if the iteration results in overfitting 

with respect to the test set used during iteration than the final accuracy can become smaller. 



 Ensemble Feature Selection Based on Contextual Merit and Correlation Heuristics         167 

 

statistically significant for Car and LED_17 data sets. For the other data sets we can-
not conclude that there is no effect of iterations. It just unobserved on current data. 

Finally, we compare heuristic-based ensembles with the C4.5 learning algorithm. 
Heuristic-based ensembles use much less amount of features in order to construct 
classifiers, as it is shown in Table 2. The t-test indicated that CM_a is significantly 
better than C4.5 for Car and Waveform, and C4.5 outperformed on Vehicle. The sign 
test over all data sets sums up that CM_a works in 6 cases better, in 3 cases worse, 
and in 1 case tie. The sign test for CR_a shows that CR_a and C4.5 are comparable. 
CR_a is significantly better for Glass and Waveform data sets, whereas C4.5 is sig-
nificantly better for Car, LED_17 and Zoo data sets. 

6 Conclusions 

Ensembles of classifiers can be constructed by a number of methods with the purpose 
of creating a set of diverse and accurate base classifiers. Feature selection techniques, 
along with other techniques are applied to prepare the training sets for construction of 
the base classifiers. In this paper, we have analyzed and experimented with two fea-
ture selection heuristics.  Both the CM-based and the correlation-based ones rely on 
quite similar assumptions concerning heterogeneous classification problems. We 
produced ensembles including as many base classifiers as there are classes and each 
base classifier was produced by C4.5 to distinguish instances of one class from the 
other classes. Each classifier is based on a subset of features and these features are 
selected using the CM-based or correlation-based merit values. 

In order to refine the ensemble characteristics, we applied iterative refinement dur-
ing the final ensemble generation process. The refinement cycle provides feedback 
promoting more diverse set of base classifiers taking into account global accuracy. 

We have evaluated our approach on a number of data sets from the UCI machine 
learning repository. Experiments showed that CM-based approach often outper-
formed in accuracy than correlation-based approach, however, the latter in the most 
of cases produces more diverse classifiers. Iterations have usually greater effect with 
CM-based approach making the difference in diversity smaller at the end. The corre-
lation-based approach has an advantage producing more simple base classifiers than 
CM-based because of small number of features used. The iterative refinement cycle 
increase diversity for CM-based approach more effectively than for correlation-based 
one. As far as iterations promote more diverse classifiers it seems that such a refine-
ment is more preferable for a heuristic producing the base classifiers of small diver-
sity. Further research is also needed to found more beneficial iterative refinement for 
the correlation-based approach. CM-based ensemble in many cases works better than 
C4.5. Correlation-based ensemble is comparable in accuracy with C4.5, at least with 
current iterative refinement used. 



168        S. Puuronen, I. Skrypnyk, and A. Tsymbal 

 

References 

1.  C., Hong, S.J., Hosking, J.R.M., Lepre, J., Pednault, E.P.D., Rosen, B.K.: Decomposition 
Apte of heterogeneous classification problems. Advances in Intelligent Data Analysis, 
Springer-Verlag, London (1997) 17-28. 

2.  Batitti, R., Colla, A.M.: Democracy in neural nets: voting schemes for classification. Neu-
ral Networks, Vol. 7, No. 4 (1994) 691-707.  

3.  Bauer, E. Kohavi, R.: An empirical comparison of voting classification algorithms: bag-
ging, boosting, and variants. Machine Learning, Vol.  36 (1999) 105-139. 

4.  Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis, Vol. 1, 
No. 3, Elsevier Science (1997). 

5.  Dietterich, T. Machine learning research: four current directions. Artificial Intelligence, 
Vol. 18, No. 4 (1997) 97-136. 

6.  Fan, W., Stolfo, S., Chan, P.: Using conflicts among base classifiers to measure the per-
formance of stacking. In: Proc. 16th Int. Conf. on Machine Learning (ICML'99) Workshop 
on Recent Advanced in Meta-learning and Future Work, (1999) 10-17. 

7.  Hall, M.: Correlation-based feature selection for discrete and numeric class machine learn-
ing. In: Proc. 17th Int. Conf. on Machine learning, Stanford University, CA, Morgan Kauf-
mann Publishers (2000). [http://www.iit.nrc.ca/bibliographies/feature-selection.html] 

8.  Hansen, L., Salamon, P.: Neural network ensembles. In: IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 12 (1990) 993-1001. 

9.  Hong, S.J.: Use of contextual information for feature ranking and discretization. IEEE 
Transactions on knowledge and Data Engineering, Vol. 9, No. 5 (1997) 718-730. 

10.  Howe, N., Cardie C.: Examining locally varying weights for nearest neighbor algorithms. 
Lecture Notes in Artificial Intelligence, Springer (1997) 455-466. 

11.  Kohavi, R., Sommerfield, D., Dougherty, J.: Data mining using MLC++: a machine learn-
ing library in C++. Tools with Artificial Intelligence, IEEE CS Press (1996) 234-245. 

12.  Kononenko, I., Simec, E., Robnik, M.: Overcoming the myopia of inductive learning 
algorithms with RELIEF. Applied Intelligence, Vol. 7 (1997) 39-55. 

13.  Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Data Sets  
  [http://www.ics.uci.edu/ "mlearn/MLRepository.html]. Dep-t of Information and CS, Un-

ty of California, Irvine, CA (1998). 
14.  Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. Artificial Intelligent 

Research, Vol. 11 (1999), 169-198. 
15.  Opitz, D.: Feature selection for ensembles. In: 16th National Conf. on Artificial Intelligence 

(AAAI), Orlando, Florida (1999) 379-384. 
16.  Oza, N., Tumer, K.: Dimensionality Reduction Through Classifier Ensembles. Tech. Rep. 

NASA-ARC-IC-1999-126. 
17.  Prodromidis, A. L., Stolfo, S. J., Chan P. K.: Pruning classifiers in a distributed meta-

learning system. In: Proc. 1st National Conference on New Information Technologies, 
(1998) 151-160. 

18.  Puuronen, S., Skrypnyk, I., Tsymbal, A.: Ensemble feature selection based on the contex-
tual merit. In: Proc. 3rd Int. Conf. on Data Warehousing and Knowledge Discovery 
(DaWaK’01), (2001) (to appear). 

19.   Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, 
California (1993). 

20.  Skrypnyk, I., Tsymbal, A., Puuronen, S.: Local feature selection for heterogeneous prob-
lems. In: Proc. 2nd Int. Conf. on Data Mining 2000, WIT Press (2000) 203-212. 

21.  Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Con-
nection Science, Vol. 8 Nos. 3,4 (1996) 385-404.  



Interactive Constraint-Based Sequential Pattern
Mining�

Marek Wojciechowski

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Marek.Wojciechowski@cs.put.poznan.pl

Abstract. Data mining is an interactive and iterative process. It is very
likely that a user will execute a series of similar queries differing in pat-
tern constraints and mining parameters, before he or she gets satisfying
results. Unfortunately, data mining algorithms currently available suffer
from long processing times, which is unacceptable in case of interactive
mining. In this paper we discuss efficient processing of sequential pat-
tern queries utilizing cached results of other sequential pattern queries.
We analyze differences between sequential pattern queries and propose
algorithms that in many cases can be used instead of time-consuming
mining algorithms.

1 Introduction

Data mining aims at discovery of useful patterns from large databases or ware-
houses. One of the most popular data mining methods is sequential pattern dis-
covery introduced in [2]. Informally, sequential patterns are the most frequently
occurring subsequences in sequences of sets of items. The initial formulation of
the problem was significantly extended in [10], where a taxonomy on items was
added to support discovery of so called generalized sequential patterns, and three
time constraints (min-gap, max-gap, and time window) were introduced to be
used when checking if a given source sequence contains a given pattern. For that
extended problem formulation, an efficient algorithm called GSP was proposed.
Applications of sequential patterns include analysis of telecommunication sys-
tems, discovering frequent buying patterns, analysis of patients’ medical records,
etc.

From a user’s point of view, data mining can be seen as an interactive and
iterative process of advanced querying: a user specifies the source dataset and
the requested class of patterns, the system chooses the appropriate data mining
algorithm and returns discovered patterns to the user [4][6]. A user interacting
with a data mining system has to specify several constraints on patterns to be
discovered. However, usually it is not trivial to find a set of constraints leading
� This work was partially supported by the grant no. KBN 43-1309 from the State

Committee for Scientific Research (KBN), Poland.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 169–181, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



170 M. Wojciechowski

to the satisfying set of patterns. Thus, users are very likely to execute a series of
similar data mining queries before they find what they need. Unfortunately, data
mining algorithms require long processing times, which makes such interaction
difficult.

In this paper, we discuss efficient sequential pattern discovery in the presence
of materialized results of previous sequential pattern queries. We claim that a
data mining system should exploit the fact that a user is very likely to execute
a number of similar sequential pattern queries during a single session. We pro-
pose caching results of mining queries by materializing their results on disk (we
assume that a data mining system is going to be assigned a certain amount of
disk space for that purpose). It is obvious that materialized results of a query
can be used to answer an identical query, therefore we concentrate on processing
queries different from those whose results are available. The possibility of an-
swering a query using known results of another query depends on the differences
between the two queries. Our goal is to provide criteria for determining if cached
results of a given query can be used to answer the current query without running
a complete mining algorithm, and introduce efficient sequential pattern query
processing algorithms exploiting materialized patterns.

Exploiting cached results of previous mining queries has been studied in
the context of association rules [3][7]. However, direct application of methods
and techniques introduced for association rules to sequential pattern discovery
problem is not possible since different types of constraints are available in the two
problems. Nevertheless, it seems that the general ideas should stay unchanged.

In has been observed [3] that the three particularly interesting relationships
between two mining queries DMQ1 and DMQ2 extracting patterns from the
same data are equivalence, inclusion, and dominance. The three relationships
are interesting since they represent situations, where one data mining query can
be efficiently answered using the results of another query. Differences between
mining queries leading to these relationships were analyzed only in the context
of association rules. In this paper we present analogous analysis concerning se-
quential patterns. Thus, most of our work can be regarded as the extension of
the approach from [3] into sequential pattern discovery.

1.1 Sequential Patterns

Let L = l1, l2, ..., lm be a set of literals called items. An itemset is a non-empty
set of items. A sequence is an ordered list of itemsets and is denoted as <
X1X2...Xn >, where Xi is an itemset (Xi ⊆ L). Xi is called an element of the
sequence. The size of a sequence is the number of items in the sequence. The
length of a sequence is the number of elements in the sequence. Let D be a
set of variable length sequences (called data-sequences), where for each sequence
S =< X1X2...Xn > , a timestamp is associated with each Xi.

With no time constraints we say that a sequence X =< X1X2...Xn > is
contained in a data-sequence Y =< Y1Y2...Ym > if there exist integers i1 < i2 <
... < in such that X1 ⊆ Yi1 , X2 ⊆ Yi2 , ..., Xn ⊆ Yin . We call < Yi1Yi2 ...Yin > an
occurrence of X in Y . We consider the following user-specified time constraints



Interactive Constraint-Based Sequential Pattern Mining 171

while looking for occurrences of a given sequence: minimal and maximal gap
allowed between consecutive elements of an occurrence of the sequence (called
min-gap and max-gap), and time window that allows a group of consecutive
elements of a data-sequence to be merged and treated as a single element as
long as their timestamps are within the user-specified window-size.

The support of a sequence < X1X2...Xn > in D is the fraction of data-
sequences in D that contain the sequence. A sequential pattern is a sequence
whose support in D is above the user-specified threshold.

1.2 Relationships between Results of Data Mining Queries

Two data mining queries are equivalent if for all datasets they both return the
same set of patterns and the values of statistical significance measures (e.g.
support) for each pattern are the same in both cases. A data mining query
DMQ1 includes a data mining query DMQ2 if for all datasets each pattern in
the results of DMQ2 is also returned by DMQ1 with the same values of the
statistical significance measures. A data mining query DMQ1 dominates a data
mining query DMQ2 if for all datasets each pattern in the results of DMQ2 is
also returned by DMQ1, and for each pattern returned by both queries its values
of the statistical significance measures evaluated by DMQ1 are not less than is
case of DMQ2. Equivalence is a particular case of inclusion, and inclusion is a
particular case of dominance. Equivalence, inclusion, and dominance meet the
transitivity property.

If for a given query, results of a query equivalent to it, including it, or dom-
inating it are available, the query can be answered without running a costly
mining algorithm. In case of equivalence no processing is necessary, since the
queries have the same results. In case of inclusion, one scan of the materialized
query results is necessary to filter out patterns that do not satisfy constraints
of the included query. In case of dominance, one verifying scan of the source
dataset is necessary to evaluate the statistical significance of materialized pat-
terns (filtering out the patterns that do not satisfy constraints of the dominated
query is also required).

1.3 Related Work

To facilitate interactive and iterative pattern discovery, [8] proposed to materi-
alize patterns discovered with the least restrictive selection criteria, and answer
incoming queries by filtering the materialized pattern collection. This approach
is not a perfect solution of the problem since pattern mining with very low
minimum support thresholds might lead to collections of frequent patterns even
larger than the original database. Moreover, restricting certain constraints (e.g.
time constraints in the context of sequential pattern mining) not only makes
some patterns infrequent but also changes the support of patterns that remain
frequent.

Much more reasonable and flexible solutions supporting interactive and it-
erative mining were presented in [7], in the context of association rules. The



172 M. Wojciechowski

solutions presented there consisted in caching results of mining queries. In the
approach, materialization of frequent itemsets instead of rules was proposed.
However, in some cases it was required to materialize also some of the infre-
quent itemsets.

Most of the research on sequential patterns focused on introducing new al-
gorithms, more efficient than GSP (e.g. [5][9]). However, the novel methods do
not handle time constraints and taxonomies. Thus, GSP still remains the most
general sequential pattern discovery algorithm and the reference point for new
methods and techniques.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 presents constraints that can be
specified in sequential pattern mining. In Sect. 3, relationships between sequen-
tial pattern queries are discussed. Section 4 contains efficient sequential pattern
query processing algorithms. Experimental results concerning the proposed al-
gorithms are presented in Sect. 5. We conclude with a summary in Sect. 6.

2 Constraint-Based Sequential Pattern Mining

In constraint-based sequential pattern mining, we identify the following classes
of constraints: database constraints, pattern constraints, and time constraints.
Database constraints are used to specify the source dataset. Pattern constraints
specify which patterns are interesting and should be returned by the query.
Finally, time constraints influence the process of checking whether a given data-
sequence contains a given pattern.

The basic formulation of the sequential pattern discovery problem introduces
three time constraints: max-gap, min-gap, and time window, and assumes only
one pattern constraint (expressed by means of the minimum support threshold).
We model pattern constraints as complex Boolean predicates having the form of
a conjunction of basic Boolean predicates on patterns presented below:

– π(SPL, α, pattern) - true if pattern support is less than α, false otherwise;
– π(SPG, α, pattern) - true if pattern support is greater than α, false other-

wise;
– π(SL, α, pattern) - true if pattern size is less than α, false otherwise;
– π(SG, α, pattern) - true if pattern size is greater than α, false otherwise;
– π(LL, α, pattern) - true if pattern length is less than α, false otherwise;
– π(LG, α, pattern) - true if pattern length is greater than α, false otherwise;
– π(C, β, pattern) - true if β is a subsequence of the pattern, false otherwise;
– π(NC, β, pattern) - true if β is not a subsequence of the pattern, false

otherwise.

We believe that the above list of predicates is sufficient to allow users to express
their pattern selection criteria. For simplicity’s sake, in length and size predicates
we consider only sharp inequalities.



Interactive Constraint-Based Sequential Pattern Mining 173

3 Relationships between Sequential Pattern Queries

Inclusion and dominance relationships between two data mining queries are de-
fined for queries operating on the same dataset. Therefore, analyzing differences
between sequential pattern queries, we consider only differences in time and
pattern constraints.

Definition 1. Given two basic Boolean pattern predicates b1 and b2, we say that
b2 is stronger than b1 if one of the following conditions holds:

1. b1 = π(SPG, α1, pattern) and b2 = π(SPG, α2, pattern), where α2 > α1,
2. b1 = π(SPL, α1, pattern) and b2 = π(SPL, α2, pattern), where α2 < α1,
3. b1 = π(SG, α1, pattern) and b2 = π(SG, α2, pattern), where α2 > α1,
4. b1 = π(SL, α1, pattern) and b2 = π(SL, α2, pattern), where α2 < α1,
5. b1 = π(LG, α1, pattern) and b2 = π(LG, α2, pattern), where α2 > α1,
6. b1 = π(LL, α1, pattern) and b2 = π(LL, α2, pattern), where α2 < α1,
7. b1 = π(C, β1, pattern) and b2 = π(C, β2, pattern), where a pattern β1 is a

subsequence of the pattern β2 and the size of β1 is less than the size of β2,
8. b1 = π(NC, β1, pattern) and b2 = π(NC, β2, pattern), where pattern β2 is

a subsequence of the pattern β1 and the size of β2 is less than the size of β1.

Definition 2. We say that a data mining query DMQ2 extends pattern con-
straints of a data mining query DMQ1 if any of the following conditions holds:

1. Pattern constraints of DMQ1 have a form of a conjunction of n basic
Boolean pattern predicates, pattern constraints of DMQ2 have a form of
a conjunction of n + 1 basic Boolean pattern predicates (n ≥ 0), and each
basic Boolean pattern predicates in DMQ1 also appears in DMQ2;

2. DMQ1 and DMQ2 have pattern constraints p1 and p2 respectively, where
p1 and p2 are conjunctions of n basic Boolean pattern predicates (n ≥ 1),
p1 = p ∧ b1, p2 = p ∧ b2 (p is a conjunction of n − 1 basic Boolean pattern
predicates), and b2 is stronger than b1;

3. It is possible to formulate a data mining query DMQ3 such that DMQ2 ex-
tends pattern constraints of DMQ3 and DMQ3 extends pattern constraints
of DMQ1. (The relationship of extending pattern constraints is transitive.)

In other words, a data mining query DMQ2 extends pattern constraints of a
data mining query DMQ1 if pattern constraints of DMQ1 can be transformed
into pattern constraints of DMQ2 by appending new basic Boolean pattern
predicates or replacing basic Boolean pattern predicates with stronger ones.

Given two sequential pattern queries, there are four cases possible regard-
ing pattern constrains: DMQ1 and DMQ2 have the same pattern constraints,
DMQ1 extends pattern constraints of DMQ2, DMQ2 extends pattern con-
straints of DMQ1, or pattern constraints of DMQ1 and DMQ2 are not compa-
rable.

Definition 3. We say that a data mining query DMQ2 extends time con-
straints of a data mining query DMQ1 if any of the following conditions holds:



174 M. Wojciechowski

1. The value of the max-gap parameter in DMQ2 is less than in DMQ1 and
both queries have the same value of the min-gap parameter, and the same
value of the window-size parameter;

2. The value of the min-gap parameter in DMQ2 is greater than in DMQ1 and
both queries have the same value of the max-gap parameter, and the same
value of the window-size parameter;

3. The value of the window-size parameter in DMQ2 is less than in DMQ1
and both queries have the same value of the max-gap parameter, and the
same value of the min-gap parameter;

4. It is possible to formulate a data mining query DMQ3 such that DMQ2
extends time constraints of DMQ3 and DMQ3 extends time constraints of
DMQ1. (The relationship of extending time constraints is transitive.)

In other words, a data mining query DMQ2 extends time constraints of a data
mining query DMQ1 if it restricts at least one of the time parameters (max-gap,
min-gap, window-size) and does not relax any time parameters.

Given two sequential pattern queries, there are four cases possible regarding
time constrains: DMQ1 and DMQ2 have the same time constraints, DMQ1
extends time constraints of DMQ2, DMQ2 extends time constraints of DMQ1,
or time constraints of DMQ1 and DMQ2 are not comparable.

Example 1. Let us consider the following three sequential pattern queries, oper-
ating on the same dataset:

DMQ1 = {max-gap: 100, min-gap: 0, window-size: 1, π(SPG, 0.2, pattern)}
DMQ2 = {max-gap: 100, min-gap: 0, window-size: 1, π(SPG, 0.1, pattern) ∧
π(SG, 3, pattern)}
DMQ3 = {max-gap: 100, min-gap: 7, window-size: 1, π(SPG, 0.2, pattern) ∧
π(SG, 3, pattern)}

DMQ3 extends pattern constraints of DMQ1 and DMQ2, while pattern con-
straints of DMQ1 and DMQ2 are not comparable. DMQ3 extends time con-
straints of DMQ1 and DMQ2, while time constraints DMQ1 and DMQ2 are
the same.

The two relationships defined above concern the syntax of queries, while the
general inclusion and dominance relationships refer to results of queries. Below
we introduce three theorems regarding dependence of relationships between re-
sults of two queries on syntactic differences between the two queries. We also
introduce several lemmas on which the proofs of theorems are based. For brevity,
we do not include proofs of the lemmas since they come straight from the above
definitions and inherent properties of pattern and time constraints.

Lemma 1. Let b1 and b2 be basic Boolean pattern predicates such that b2 is
stronger than b1. For each pattern p, if p satisfies b2 then p satisfies b1.

Lemma 2. Let DMQ1 and DMQ2 be two sequential pattern queries, operating
on the same dataset and having the same time constraints. Let p1 and p2 denote
pattern constraints of DMQ1 and DMQ2 respectively. If p2 = p1 ∧ b, where b is
a basic Boolean pattern predicate, then DMQ1 includes DMQ2.



Interactive Constraint-Based Sequential Pattern Mining 175

Lemma 3. Let DMQ1 and DMQ2 be two sequential pattern queries, operating
on the same dataset and having the same time constraints. Let p1 and p2 denote
pattern constraints of DMQ1 and DMQ2 respectively. If p1 = p ∧ b1 and p2 =
p ∧ b2, where p is a conjunction of n basic Boolean pattern predicates (n ≥ 0)
and b2 is stronger than b1, then DMQ1 includes DMQ2.

Theorem 1. Let DMQ1 and DMQ2 be two sequential pattern queries, operat-
ing on the same dataset and having the same time constraints. If DMQ2 extends
pattern constraints of DMQ1, then DMQ1 includes DMQ2.

Proof. From the Definition 2, we know that if DMQ2 extends pattern constraints
of DMQ1, then it is possible to formulate a sequence of sequential pattern queries
DMQi1 , DMQi2 , ..., DMQin

operating on the same dataset and having the
same time constraints as DMQ1 and DMQ2, such that DMQi1 = DMQ1 and
DMQin = DMQ2, and for j = 2..n one of the following conditions holds:

1. pattern constraints of DMQij−1 have a form of a conjunction of n basic
Boolean pattern predicates, pattern constraints of DMQij

have a form of
a conjunction of n + 1 basic Boolean pattern predicates (n ≥ 0), and each
basic Boolean pattern predicates in DMQij−1 also appears in DMQij ;

2. DMQij−1 and DMQij
have pattern constraints p1 and p2 respectively, where

p1 and p2 are conjunction of n basic Boolean pattern predicates (n ≥ 1),
p1 = p ∧ b1, p2 = p ∧ b2 (p is a conjunction of n − 1 basic Boolean pattern
predicates), and b2 is stronger than b1.

From the Lemmas 2 and 3 and the transitivity property of the inclusion rela-
tionship, we have DMQ1 includes DMQ2.

Lemma 4. Let DMQ1 and DMQ2 be two sequential pattern queries, operating
on the same dataset and having the same pattern constraints. Let max1, min1,
and win1 denote values of max-gap, min-gap, and window-size parameters of
DMQ1, and max2, min2, and win2 values of max-gap, min-gap, and window-
size parameters of DMQ2. If one of the following conditions holds:

1. max2 < max1 and min2 = min1 and win2 = win1,
2. min2 > min1 and max2 = max1 and win2 = win1,
3. win2 < win1 and max2 = max1 and min2 = min1

then DMQ1 dominates DMQ2.

Theorem 2. Let DMQ1 and DMQ2 be two sequential pattern queries, oper-
ating on the same dataset and having the same pattern constraints. If DMQ2
extends time constraints of DMQ1, then DMQ1 dominates DMQ2.

Proof. Let max1, min1, and win1 denote values of max-gap, min-gap, and
window-size parameters of DMQ1, and max2, min2, and win2 values of max-
gap, min-gap, and window-size parameters of DMQ2. Since DMQ2 extends time



176 M. Wojciechowski

constraints of DMQ1, we have: win2 ≤ win1, max2 ≤ max1 and min2 ≥ min1.
Let DMQ3 and DMQ4 be sequential pattern queries operating on the same
dataset and having the same pattern constraints as DMQ1 and DMQ2, Let the
values of max-gap, min-gap, and window-size parameters be max2, min1, and
win1 in case of DMQ3, and max2, min2, and win1 in case of DMQ4. Thus,
from the Lemma 4, DMQ1 dominates DMQ3, DMQ3 dominates DMQ4, and
DMQ4 dominates DMQ2 (in fact, in each of the three cases equivalence is pos-
sible but equivalence is a particular case of dominance). Since the dominance
relationship is transitive, DMQ1 dominates DMQ2.

Theorem 3. Let DMQ1 and DMQ2 be two sequential pattern queries, operat-
ing on the same dataset. If DMQ2 extends pattern constraints of DMQ1 and
DMQ2 extends time constraints of DMQ1, then DMQ1 dominates DMQ2.

Proof. Let DMQ3 be a sequential pattern query operating on the same dataset
as DMQ1 and DMQ2, having pattern constraints of DMQ1 and time con-
straints of DMQ2. Thus, DMQ2 extends pattern constraints of DMQ3 and
DMQ3 extends time constraints of DMQ1. From the Theorems 1 and 2 we
have: DMQ1 dominates DMQ3 and DMQ3 includes DMQ2. Since inclusion
is a particular case of dominance and the dominance relationship is transitive,
DMQ1 dominates DMQ2.

4 Algorithms for Efficient Sequential Pattern Query
Processing in the Presence of Materialized Results of
Previous Queries

Given a sequential pattern query DMQ and materialized results of a sequential
pattern query DMQV , in the general case, even if DMQV and DMQ operate on
the same dataset but differ in pattern and time constraints, it is not possible to
answer DMQ without running a sequential pattern mining algorithm. However,
there are four particular cases where DMQ can be answered efficiently using the
materialized results of DMQV since they correspond to equivalence, inclusion,
and dominance relationships between DMQV and DMQ. These cases are listed
below:

1. If DMQV and DMQ have the same pattern and time constraints, then the
results of DMQ are equal to the results of DMQV (the two queries are
equivalent since they are identical);

2. If DMQV and DMQ have the same time constraints and DMQ extends
pattern constraints of DMQV , then DMQ can be answered by filtering out
the patterns returned by DMQV not satisfying pattern constraints of DMQ
(DMQV includes DMQ according to the Theorem 1);

3. If DMQV and DMQ have the same pattern constraints and DMQ extends
time constraints of DMQV , then DMQ can be answered by evaluating the
support of the patterns returned by DMQV using the time constraints of
DMQ, and filtering out patterns not satisfying the minimum support thresh-
old of DMQ. (DMQV dominates DMQ according to the Theorem 2);



Interactive Constraint-Based Sequential Pattern Mining 177

4. If DMQ extends pattern constraints of DMQV and DMQ extends time con-
straints of DMQV , then DMQ can be answered by evaluating the support
of the patterns returned by DMQV using the time constraints of DMQ,
and filtering out patterns not satisfying the pattern constraints of DMQ.
(DMQV dominates DMQ according to the Theorem 3).

Answering the query in the first case (the case of equivalence) is trivial, therefore
we concentrate on details concerning inclusion and dominance relationships.

For the second case we propose an algorithm that performs one sequential
scan of the materialized patterns, processing one pattern at a time (main mem-
ory requirements are minimal). Each pattern is tested if it satisfies these basic
Boolean pattern predicates from the pattern constraints of DMQ that were
not in DMQV . All the basic Boolean pattern predicates of DMQ that were
in DMQV must be satisfied by all the materialized patterns since pattern con-
straints in our model have the form of a conjunction of basic predicates. The
algorithm for the second case is presented below.

Algorithm 1 Answering a sequential pattern query in case of inclusion due to
extending pattern constraints (Result Filtering)
Input: A sequential pattern query issued by a user (DMQ) and results of a
sequential pattern query DMQV including DMQ.
Output: The results of DMQ.
Method:

begin
Answer = results of DMQV ;
for each p ∈ results of DMQV do
begin

for each basic Boolean pattern predicate b such that
b is in pattern constraints of DMQ and
b is not in pattern constraints of DMQV do
begin

if not (p satisfies b) then
Answer = Answer \ {p};
break;

end if;
end;

end;
output Answer;

end.

For the third and fourth cases we propose one uniform algorithm (both cases re-
sult in the dominance relationship). Conceptually, the algorithm has to scan the
source dataset once in order to re-evaluate the support of materialized patterns
and then prune the patterns that do not satisfy pattern constraints of DMQ.
However, for the fourth case, we apply one optimization to reduce the cost of
the support re-evaluation phase that is proportional to the number of patterns



178 M. Wojciechowski

to be verified. Before scanning the source dataset, we filter out patterns that do
not satisfy pattern constraints of DMQ using Algorithm 1. After the scan of the
dataset, we only test the predicate representing the minimum support thresh-
old (the only one that for a given pattern could by true before the support
re-evaluation, and false after that operation). The effects of this optimization
will be discussed in the next section.

During the support re-evaluation phase, when testing whether a currently
processed data-sequence contains a given pattern, all time constraints of DMQ
have to be taken into account, even if only one of them has been restricted
compared to DMQV . This is motivated by the observation that a given pattern
may occur several times in a given data-sequence. As a result, if we checked
only one of the time constraints, we might find a different occurrence satisfying
the constraint than the occurrence previously found as valid with respect to the
other two time constraints.

The algorithm in the form presented below assumes that the set of materi-
alized patterns supporting pattern constraints of DMQ fits into main memory.
If this is not the case, the set of materialized patterns has to be partitioned into
portions that fit into main memory and the algorithm has to be run on each of
the partitions.

Algorithm 2 Answering a sequential pattern query in case of dominance due
to extending time constraints (Result Verification)
Input: A sequential pattern query issued by a user (DMQ), a collection of
data-sequences D, and results of a sequential pattern query DMQV dominating
DMQ.
Output: The results of DMQ.
Method:

begin
if DMQ extends pattern constraints of DMQV then

Answer = patterns in results of DMQV satisfying
pattern constraints of DMQ; /* Algorithm 1 */

else Answer = results of DMQV ;
end if;
scan D once evaluating the support of patterns
in Answer using time constraints of DMQ;
for each p ∈ Answer do
begin

if p exceeds the minimum support threshold of DMQ
then output p; end if;

end;
end.

Having provided sequential pattern query processing algorithms for the cases
leading to equivalence, inclusion and dominance relationships, we have to ad-
dress situations where for a given query issued by a user (DMQ), there are



Interactive Constraint-Based Sequential Pattern Mining 179

many materialized query results that could be used to answer the query without
running a complete data mining algorithm. In general, the set of applicable mate-
rialized query results consists of results of queries equivalent to DMQ, including
DMQ, and dominating DMQ. It is clear that in the first place the data mining
system should look for a query identical to DMQ (the case of equivalence) since
in that case the results of DMQ are directly available. Then, the system should
look for query results that could be used by Algorithm 1 (returned by a query
DMQV having the same time constraints as DMQ, such that DMQ extends
pattern constraints of DMQV ). If no query satisfying the above criteria could
be found, the system should try to find query results that could be used by Algo-
rithm 2 (returned by a query DMQV , such that DMQ extends time constraints
of DMQV and either DMQV and DMQ have the same pattern constraints or
DMQ extends pattern constraints of DMQV ). Finally, if again no appropriate
query criteria could be found, a complete data mining algorithm has to be run.

We believe that in majority of cases Algorithm 1 will be more efficient than
Algorithm 2 since the former requires one scan of the pattern set and no scan
of the source dataset, while the latter scans the source dataset once and during
this scan for each data-sequence processes all the patterns. However, it has to
be noted that in certain cases application of Algorithm 2 may be more efficient
than application of Algorithm 1 (for example, if the source dataset and the
materialized set of patterns to be used by Algorithm 2 are extremely small,
whereas the materialized pattern set to be used by Algorithm 1 is huge).

The final issue that has to be addressed is the selection of the materialized
query results to be used by Algorithms 1 and 2 if there is more than one query
including or dominating the query to be answered. We observe that it is not
possible to provide selection criteria always leading to the minimal processing
time, because the processing time depends not only on the syntax of the queries
but also on the contents of the source dataset. Therefore, we decide to optimize
the space requirements by choosing the materialized pattern set of the smallest
size. We believe that this solution will also lead to minimal processing time in
many situations, since smaller size of the pattern set leads to the smaller number
or size of patterns that have to be filtered or verified against the database. It
is not guaranteed, however, since the processing time is affected also by the
number of predicates that have to be tested for each pattern, which depends
on the pattern structure (subsequent predicates are tested until one of them is
found to be false).

Example 2. Let us consider the following three queries discovering sequential
patterns from the same dataset:

DMQ1 = {max-gap: 100, min-gap: 0, window-size: 1, π(SPG, 0.2, pattern)}
DMQ2 = {max-gap: 100, min-gap: 7, window-size: 1, π(SPG, 0.1, pattern) ∧
π(SG, 3, pattern)}
DMQ = {max-gap: 100, min-gap: 7, window-size: 1, π(SPG, 0.2, pattern) ∧
π(SG, 3, pattern)}

Let us assume that results of DMQ1 and DMQ2 are stored in cache, and DMQ
is the query to be answered. Since neither DMQ1 nor DMQ2 is identical to



180 M. Wojciechowski

DMQ, the data mining system would choose to answer DMQ using Algorithm
1 exploiting cached results of DMQ2 (returning those patterns from the results of
DMQ2 that exceed the minimum support threshold of 0.2). If results of DMQ2
were not available, the system would answer DMQ using Algorithm 2 exploiting
the results of DMQ1 (selecting patterns from the results of DMQ1 whose size is
greater than 3, re-evaluating their support in one scan of the source dataset using
max-gap of 100, min-gap of 7, and window-size of 1, and returning those patterns
that exceed the minimum support threshold of 0.2 after support re-evaluation).

5 Experimental Results

In order to evaluate performance gains offered by our sequential pattern query
processing algorithms, we performed several experiments on a synthetic dataset
generated by means of the GEN generator from the Quest project [1]. We treated
transaction identifiers generated by GEN as transaction times. Thus, the time
gap between two adjacent elements of each data-sequence was always equal to
one time unit. The dataset used in the experiments consisted of 1000 data-
sequences. GEN parameter values were chosen so that for the minimum support
thresholds used in queries there were a reasonable number of sequential patterns
varying in size and length to be discovered.

In the first step we materialized the results of the query discovering all se-
quential patterns whose support was above 0.5% using max-gap of 1000, min-
gap of 0, and window-size of 1. The materialized set of patterns consisted of
about 3500 sequential patterns. Next, we tested several queries adding addi-
tional pattern constraints (concerning pattern support, size, length, or contents)
and restricting time constraints. For each query, we compared execution times of
our algorithms exploiting materialized patterns and the GSP algorithm with the
post-processing pattern filtering phase. For the queries included by the materi-
alized query, Algorithm 1 was on average more than 400 times faster than GSP.
For the queries dominated by the materialized query, Algorithm 2 was used, and
its processing time was on average more than 100 times shorter than in case
of GSP. We also tested the effects of our optimization used in case of queries
extending both pattern and time constraints of the materialized query (filtering
out patterns that do not satisfy pattern constraints before re-evaluating the sup-
port of materialized patterns). Experiments show that the optimization reduces
processing time by about 33%.

6 Concluding Remarks

We proved experimentally that our sequential pattern query processing schemes
can reduce processing time by several orders of magnitude when materialized
results of previous queries are available. However, theoretically it is possible to
imagine situations, where a complete mining algorithm could be more efficient
than our techniques. While we believe that in typical situations our methods



Interactive Constraint-Based Sequential Pattern Mining 181

should outperform mining algorithms, in the future we plan to focus on cost-
based optimization of sequential pattern queries (and data mining queries in
general) using certain statistics of the source dataset in order to choose an op-
timal query execution plan.

In the paper, we did not discuss cache management schemes, which could
certainly influence the overall performance of the system. We believe that gen-
eral purpose cache management algorithms could be used, possibly with simple
optimizations such as removing included or dominated queries first, and not ma-
terializing results of queries equivalent to queries whose results are already in
cache.

References

1. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest
Data Mining System. Proc. of the 2nd KDD Conference (1996)

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf.
(1995)

3. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proc. of the 1st
DaWaK Conference (1999)

4. Han J., Lakshmanan L., Ng R.: Constraint-Based Multidimensional Data Mining.
IEEE Computer, Vol. 32, No. 8 (1999)

5. Han J., Pei J., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M-C.: FreeSpan: Frequent
Pattern-Projected Sequential Pattern Mining. Proc. of the 6th KDD Conference
(2000)

6. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Com-
munications of the ACM, Vol. 39, No. 11 (1996)

7. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive
Discovery of Association Rules. Proc. of the 5th KDD Conference (1999)

8. Parthasarathy S., Zaki M.J., Ogihara M., Dwarkadas S.: Incremental and Interac-
tive Sequence Mining. Proc. of the 8th CIKM Conference (1999)

9. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., Hsu M-C.: PrefixS-
pan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth.
Proc. of the 17th ICDE Conference (2001)

10. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. Proc. of the 5th EDBT Conference (1996)



Evaluation of a Broadcast Scheduling Algorithm

Murat Karakaya1 and Özgür Ulusoy2

1 Department of Technical Sciences
Turkish Land Forces Academy, Ankara 06100, Turkey

2 Department of Computer Engineering
Bilkent University, Ankara 06533, Turkey

muratk@kho.edu.tr, oulusoy@cs.bilkent.edu.tr

Abstract. One of the two main approaches of data broadcasting is pull-
based data delivery. In this paper, we focus on the problem of scheduling
data items to broadcast in such a pull-based environment. Previous work
has shown that the Longest Wait First heuristic has the best performance
results compared to all other broadcast scheduling algorithms, however
the decision overhead avoids its practical implementation. Observing this
fact, we propose an efficient broadcast scheduling algorithm which is
based on an approximate version of the Longest Wait First heuristic. We
also compare the performance of the proposed algorithm against well-
known broadcast scheduling algorithms.

1 Introduction

There exist two main approaches for data dissemination in broadcast systems:
push and pull [1,2,12,19]. In push-based data delivery, the information server
tries to predict data needs using the knowledge provided by user profiles or sub-
scriptions. The server constructs a broadcast schedule in which initiation of data
transmission does not require an explicit request from mobile users. The server
repetitively transmits the content of broadcast schedule to user population. Mo-
bile users monitor the broadcast channel and retrieve the items they require as
they arrive. On the other hand, in a pull-based environment, clients explicitly
request data items by sending message to the server. The requests are compiled
in a service queue, and a scheduling algorithm decides which data item should
be broadcast.

The main contributions of our work can be described as follows. First, pre-
vious work has shown that the Longest Wait First (LWF) heuristic has the
best performance results compared to all other broadcast scheduling algorithms,
however the decision overhead avoids its practical implementation [6,7,19,5]. We
propose to use an approximate version of the LWF heuristic which can consid-
erably remove the decision overhead of LWF. Second, the implementation of the
approximate heuristic is carefully designed and also parameterized to increase the
performance with respect to different criteria. Third, some heuristics proposed to
be used in push-based broadcast environments are modified and evaluated in the

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 182–195, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Evaluation of a Broadcast Scheduling Algorithm 183

pull-based broadcast environment we simulate. And, finally detailed simulation
tests are conducted and reported.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
a mobile computing environment that we assume in our work and summarize
related work. In Sect. 3, we describe our approximate heuristic and its imple-
mentation, Bucketing scheduling algorithm. Performance evaluation results of
the proposed algorithm are provided and compared with the results of some
well-known broadcast scheduling algorithms in Sect. 4. Finally, in Sect. 5 con-
cluding remarks are provided.

2 Background

2.1 Mobile Computing Environment

In a common architectural model used for a mobile computing environment [8,
9,12], geographical area is divided into regions, called cells, each of which is cov-
ered and serviced by a stationary controller. There exist two types of computers;
mobile units (computers) (MUs) and stationary computers (SCs). SCs are con-
nected together via a fixed network. Some of SCs are equipped with wireless
interfaces to communicate with MUs and called mobile support stations (MSSs).
MSSs behave as entry points from MUs to the fixed network. MUs can consume
and also produce information by querying and updating the online database
stored on SCs. MSSs can be proxy servers on behalf of the other SCs or they
can themselves be information servers.

It is assumed in this mobile environment that there is a single broadcast
channel dedicated to data broadcast. Users monitor this channel continuously
to get the data items they require. There is a backchannel which enables MUs
to send data requests to MSSs.

2.2 Related Work

The first work related with broadcasting in a pull-based environment is by Am-
mar and Wong in the context of teletext and videotext systems [6,7,19]. In [19],
Wong proposes three alternative architectures for broadcast information deliv-
ery systems: one-way broadcast (push), two-way interaction (pull), and one-way
broadcast/two-way interaction (hybrid). The heuristics used in two-way interac-
tion are as follows [19]:

– The well-known FCFS algorithm has been modified in such a way that if a
page has been requested and placed in the service queue, a new request for
that page is ignored. In this way, redundant broadcasts of the same page are
avoided [5].

– Another heuristic proposed to be used in broadcast scheduling is Most Re-
quested First (MRF). As the name of the heuristic implies, the page with
the largest number of pending requests is selected to broadcast.



184 M. Karakaya and Ö. Ulusoy

– The MRF heuristic is configured to break ties in favor of the page with
the lowest request probability if the request probabilities of the pages are
available to the scheduling algorithm. This version of the heuristic is termed
Most Requested First Lowest (MRFL).

– The heuristic which selects the page with the largest total waiting time of
all pending requests is Longest Wait First (LWF).

These heuristics are evaluated in [19] and it is concluded that when the system
load is light, the mean response time is not sensitive to the heuristic used. This is
due to the fact that in light loads, few scheduling decisions need to be made. On
the other hand, when the system load is high and the page request probabilities
follow Zipf’s Law [20], LWF has the best performance, whereas FCFS has the
worst.

Vaidya et al. have worked on data broadcast scheduling algorithms for push-
based environments extensively and proposed several scheduling algorithms [10,
11,13,14,17,18]. In [13], Jiang and Vaidya also investigate how the variance
of response time can be minimized. The authors claim that their work and
algorithms can be applied to pull-based environments as well. Therefore, we
take their algorithms into consideration while devising our heuristic.

The work which is most related to our work is the one performed by Ak-
soy and Franklin [4,5]. The authors have proposed a scheduling algorithm which
improves and unifies FCFS and MRF heuristics. They conclude that the LWF
heuristic has the best performance results according to overall mean waiting
time. However, the authors also point out that the straightforward implementa-
tion of LWF is not practical. Aksoy and Franklin suggest to integrate FCFS and
MRF in a practical way to combine their advantages and eliminate the disad-
vantages. As a result, the authors propose the RxW heuristic which balances the
selection criterion between the number of pending requests and the first request
arrival time of a data item. RxW computes the product of the total number of
pending requests (R) and waiting time of the first request (W) of that data item,
and selects the data item with the maximum RxW value.

3 Bucketing Algorithm

We have aimed to develop a scheduling algorithm that can minimize both the
mean waiting time and its variance, as well as is robust to changes in mobile
environment and has lower overhead. We describe a new heuristic that we name
Approximate Total Waiting Time (ATWT). The proposed ATWT heuristic is
implemented using a bucketing scheme and the resulting algorithm is termed
Bucketing Algorithm.

3.1 Approximate Total Waiting Time

In order to decrease the amount of computation, we first assume that all requests
for a page come at the same time as the first one. Thus, we only keep the arrival



Evaluation of a Broadcast Scheduling Algorithm 185

time of the first request for each page. When we need to compute total waiting
time of a page, we can simply multiply the number of pending requests with
the elapsed time since the first request arrived. This approximation gives us the
upper bound of total waiting time of a page. Provided that requests arrival is
governed by the Poisson process, if a page is broadcast τ time units after the
arrival of the first request to it, mean waiting time for pending requests for this
page is τ

2 [6,17]. This fact gives an approximation to compute total waiting time
for a page as follows:

Wp(t) =
t − Ap

2
∗ Rp(t) (1)

where t is the current time, Ap is the first request arrival time, and Rp(t) is the
total number of pending requests for page p at time t. Wp(t) is the approximate
total waiting time for page p. The LWF heuristic needs to compute the total
waiting time for every page to select the one with the largest value. We can
drop the division by 2 in (1) to simplify the calculation since Wp(t) of each page
will be compared. This finalizes the basic formulation, that we call Approximate
Total Waiting Time (ATWT). ATWT enables us to record less information and
do less computation1.

Finding the Maximal ATWT. The direct implementation of the heuristic
we propose above has a time complexity of O(N), where N is the total number
of requested pages. In order to avoid the calculation of each requested page’s
ATWT, we use a method which selects a few pages and calculates only their
ATWTs to select the page with maximal ATWT value. Our implementation is
based on a bucketing technique. We classify the pages according to the number
of pending requests associated with them. All the pages that lie in bucket i will
have pending request numbers ranging between 2i−1 and 2i-1. The number of
buckets is limited by the number of pending requests for distinct pages. There
will be �log(R + 1)� buckets of pages, where R is the number of pending requests
of the most requested page in the system. In each bucket, the pages are ordered
according to their first request arrival time. The first page of each bucket is the
first requested page within that bucket.

Whenever we need to find the page with the maximal ATWT, we compare
only the ATWT values of the first pages of each bucket. Since the number of
buckets is logarithmic with respect to the most requested page’s request number,
we would examine very few candidates. The page with the largest ATWT value is
selected among the first entries of all buckets. It can be shown that the bucketing
scheme results in selecting a page with an ATWT value which is at least half of
the maximum ATWT value.

1 A formula similar to the approximation we provide for total waiting time has also
been suggested by Aksoy and Franklin [5] but through completely different reasoning
and observations from ATWT.



186 M. Karakaya and Ö. Ulusoy

3.2 Implementation of Bucketing Algorithm

The data structure used for each requested page in Bucketing algorithm is il-
lustrated in Fig. 1. Each bucket is a linked list of requested pages2. Pages are
ordered in the linked lists according to the first request arrival time. Fields Prev
and Next are pointers to the previous and next pages, respectively in the linked
list.

A

Arrival Time
First Request

requests

Total number
R

Next

of pending

Previous page

according to

A value

according to

A value

Next page

Prev

Fig. 1. Page data structure

Entries for pages are placed in buckets by mapping total number of requests
to bucket number. A page with a total request number i is placed to bucket
�log(i)� + 1.

Bucketing algorithm works as follows: when a request arrives to the server,
if it is the first request for the page, its arrival time is recorded to field A of the
page data structure and the number of pending requests (R) is set to one. The
page is placed at the end of the linked list in the first bucket since its R value
is 1.

Otherwise, if the page was requested and not yet broadcast, R is incremented
by one. Then, if the page does not belong to the existing bucket anymore, it is
moved to the appropriate bucket according to its R value. The page is then
inserted in the linked list of this bucket with respect to its A value.

In the selection of the page to broadcast, only the first page of each bucket
is examined. The page with the largest ATWT is broadcast and removed from
the bucket. The bucketing scheme reduces the decision overhead considerably
without deteriorating the quality of the produced broadcast.

We have also implemented a variant of Bucketing algorithm, called k-depth
Bucketing algorithm, in which we examine the first k entries of each bucket. By
comparing more entries in a bucket, it is expected to have more accurate ATWT.

Minimizing the Variance of Waiting Time. We have investigated the vari-
ance of waiting time produced by ATWT and several other heuristics. In [13],
Jiang and Vaidya reformulate the algorithm presented in [17] considering vari-
ance metric and propose a new algorithm called α-algorithm. The authors also
2 For performance concerns, instead of using a linked list data structure, a heap data

structure can also be implemented to store the items in each bucket. However, for
the sake of simplicity we prefer to implement a linked list data structure in the
simulation.



Evaluation of a Broadcast Scheduling Algorithm 187

claim that the algorithm can be adapted to pull-based systems as well. There-
fore, we modify the computation of ATWT in our heuristic in a way similar to
that suggested in [13] as follows:

(t − Ap)α ∗ Rp(t) (2)

where α can be assigned different values in order to tune variance of waiting
time and mean waiting time.

4 Simulation Results

We have simulated the mobile environment introduced in Sect. 2.1. The simula-
tion program was written in CSIM [16]. Due to lack of space we can not provide
all the experiments and their results. For more details please refer to [15].

4.1 Simulation Model

Our simulation model consists of three main components: a mobile support sta-
tion (MSS), a population of mobile units (MUs) and communication channels.
Published requests are kept in service queue. Online database stores the shared
data items. The decision process is performed by a scheduling algorithm. Client
population represents MUs within the cell. Communication channel is a two-way
medium. In broadcast channel, selected data items are delivered to MUs, whereas
backchannel is used to send data requests of MUs to MSS.

Simulation parameters and their values are summarized in Table 1. dbSize is
the total number of available data items at an MSS. Data items are numbered
from 1 to dbSize, where a data item is, for example, a web page or a file. We use
the terms data item and page interchangeably since the information server can
be a database or web server.

Table 1. Simulation parameters

Symbol Description Default Range Unit

λ Mean Req.Arrival Rate 10 [10-100] req./tick
Θ Request Pattern Skewness 1.0 [0.1-1.0] -
dbSize Database Size 1,000 [1,000-10,000] pages
pSize Page Size 1 - tick

Requests of MUs are represented by a single request stream. Request arrivals
are assumed to be Poisson with a mean value of λ. By increasing λ, we can sim-
ulate a higher system load. MUs may exhibit data locality, querying a particular
subset of the database repeatedly [9,12]. This subset is a hot spot for an MU.
In general, a user may request multiple items simultaneously and would expect



188 M. Karakaya and Ö. Ulusoy

to receive mutually consistent versions of the requested items. In this paper,
similar to many of the past work, we consider the case where a user demands
only one item per request, and unless the user gets the item, a new request is
not initiated. In our work, the effect of transmission errors is not considered. We
assume that when a data item is broadcast, all the users requesting that item
receive it completely. It is assumed that access probabilities follow the Zipf [20]
distribution over the database items as in many other related work (e.g., [3,5,
19]). Data items are supposed to be ordered in the database according to their
access probabilities in decreasing order, i.e., the most favorite data item is in
the first place in the database. Zipf’s law states that the relative probability
of a request for the i’th most popular data item is proportional to 1

i , where i
is between 1 and dbSize. The Zipf distribution can be formulated to show the
demand probability of each data item as below:

pi =
(1/i)Θ

ΣdbSize
i=1 (1/i)Θ

(3)

where Θ is a parameter termed access skew coefficient [18]. By changing the
value of Θ, different Zipf distributions can be obtained.

The time to broadcast a data item is calculated by a specific time unit called
tick. We assume that page sizes (pSize) are equal and each page can be transmit-
ted in one tick. The use of tick as a time unit enables us to compare easily the
results of systems with different properties such as bandwidth and data item size.
For evaluating a broadcast scheduling algorithm for a particular set of parame-
ters, the broadcast schedule is produced for at least 30,000 cycles. Furthermore,
we run each configuration ten times and use the averages as final estimates.

4.2 Performance Criteria

We have used the following performance criteria in our evaluations:

– Waiting time of a request is defined as the duration from when the request
is made until the desired data item begins to be transmitted on the channel.

– Variance of waiting time is taken into consideration to evaluate the Quality
of Service experienced by any user [13], where the overall mean waiting time
is an indication of the idle time for the whole user population.

– Worst waiting time is defined as the maximum amount of time that any
user request waits before being satisfied. The reason to use this criterion
is to check if the algorithm causes starvation of some requests, which is an
important property for interactive applications [5].

– Decision overhead is the time taken by the computation which should be
done for selecting a data item to broadcast next. The decision overhead of a
good scheduling algorithm should not be high.

4.3 Mean Waiting Time

In this experiment, mean request arrival rate (λ) is varied from 10 requests to
100 requests per tick. As depicted in Fig. 2, mean waiting times for all algorithms



Evaluation of a Broadcast Scheduling Algorithm 189

are increasing while the request arrival rate is getting higher. However, after a
certain rate, it levels off. In the figure, the results of MRF and FCFS are not
presented. Because they have much larger mean waiting time than the other
algorithms. LWF, RxW, and Bucketing algorithms are characterized by almost
the same mean waiting time. The largest difference between any two of these
three algorithms is not more than 0.8%.

Fig. 2. Mean waiting times of the LWF, RxW, and Bucketing algorithms

Although LWF is a good algorithm in terms of mean waiting time, straight-
forward implementation of it is not practical for large databases and high-speed
broadcast channels. RxW and Bucketing algorithm are the only algorithms which
are practical to implement and satisfactory in terms of mean waiting time results.

We have conducted several simulation tests to record the impact of the dif-
ferent database sizes and access skewness values. It is observed that the resulting
waiting times of algorithms are relatively almost the same. As the database size
increases, the mean waiting time increases as well. There is not much difference
between the scalability of the algorithms with respect to database size. There-
fore, concerning the time required to perform the simulation experiments, we
preferred to use a default database size of 1,000 pages for all other experiments
without losing generality. As the skewness of the Zipf distribution is increased,
mean waiting time values of the algorithms, except FCFS, are getting consid-
erably smaller. This result is due to the fact that the highly skewed request
distribution (i.e., θ ≥ 0.7) leads to the existence of many pending requests to
a few data items, and that broadcasting one of the most requested data items
satisfies many pending requests. RxW, LWF and Bucketing algorithms take the
number of pending requests into account and this property causes more efficient
use of the broadcast channel. However, when θ is 0.1, the distribution reduces to
an almost uniform distribution, and each data item has almost the same pending



190 M. Karakaya and Ö. Ulusoy

requests. In that case, all the scheduling algorithms lead to almost the same mean
waiting time. FCFS does not consider the pending request number in broadcast
scheduling. Hence, the mean waiting time obtained with this algorithm does not
improve much when the access skewness increases.

4.4 Variance of Waiting Time

In Sect. 2, we have modified our algorithm to handle the trade-off between mean
waiting time and variance of waiting time. The ATWT value used as a selection
criterion in Bucketing algorithm has been modified as in (2).

To observe the effect of different α values both on variance of waiting times
and mean waiting time of Bucketing algorithm we conduct several experiments.
In these experiments, α parameter of (2) is varied from 0.5 to 3.0, while using the
other default parameter values given in Table 1. We observe that the trade-off
between mean waiting time and variance of waiting time is evident. For higher
values of α, the variance is improving, on the other hand, the mean waiting
time of the algorithm is getting worse. The mean waiting time of the algorithm
improves while α is increased from 0.5 to a certain value, which is 0.9 in our
experiment. Then, for the values larger than this threshold, the mean waiting
time begins to worsen again. This result is due to the fact that for the α values
higher than 1, the modified ATWT heuristic in (2) attaches more importance to
the waiting time of the first request than the total number of pending requests
of a page. Therefore, the heuristic selects the pages similar to those selected with
FCFS. On the other hand, when α is set to values lower than 1, the heuristic
behaves in favor of the most requested pages like MRF. As a result, as the α
value gets smaller or larger than 1, the experienced mean waiting time becomes
more similar to that of one of the two algorithms.

We also conducted an experiment to compare the variance obtained with all
scheduling algorithms. The results depicted in Fig. 3 show that FCFS has the
lowest degree of variance due to the fact that in the worst case, the algorithm
broadcasts any requested data item after broadcasting the whole set of data
items in the database. That is, for the waiting time of a request, there is an
upper bound which is determined by the database and page sizes. This upper
bound also limits the variance of the waiting time. However, we can not claim
this argument for the other algorithms.

The performance results obtained after modifying the computation of ATWT
in our algorithm as in (2) are presented in Fig. 3. In this experiment, we set
the α value to 2. For the high workloads, the modified ATWT has even better
variance of waiting time than that of FCFS. However, as discussed above, the
mean waiting time of the modified ATWT has become slightly worse (see Fig. 4).
With a greater value for α (e.g., 3), the variance of waiting time can be further
decreased; nonetheless, the the mean waiting time would become worse.



Evaluation of a Broadcast Scheduling Algorithm 191

Fig. 3. Comparing Bucketing algorithm when α=2

Fig. 4. Mean waiting time of Bucketing algorithm when α=2

4.5 Worst Waiting Time

The reason to investigate the worst waiting time is to check if a scheduling
algorithm causes starvation of any request, which is an important property that
should be avoided in interactive applications. Figure 5 displays the results for
the longest waiting time experienced by any MU during the whole simulation
time. For the default values of the simulation parameters presented in Table 1,
FCFS has the lowest worst waiting time among all the algorithms. As discussed
above, when FCFS is employed as the scheduling algorithm, any requested data
item will be broadcast after the data items previously requested and the number
of these data items is limited by the database size. In other words, the largest



192 M. Karakaya and Ö. Ulusoy

possible worst waiting time of a request is the time taken by broadcasting all
the database items. However, for the other algorithms, it might be possible
that a request waits while some of the data items are broadcast multiple times.
Bucketing algorithm has considerably lower worst waiting time values compared
to RxW. The results obtained with MRF are so much larger than those of the
other algorithms that we do not include them in the figure.

Fig. 5. Worst waiting time

4.6 Scheduling Decision Overhead

As discussed previously, a good scheduling algorithm should not have much
scheduling decision overhead. In implementing the performance model, the de-
cision overhead associated with each algorithm has not been considered. Since
this overhead can not be accurately simulated for different types of algorithms,
the time spent during the decision process has been ignored. For a comparative
evaluation of decision overhead of the scheduling algorithms, we examined the
number of requests scanned for selecting one of them to broadcast. If the number
is large, the decision takes much more time and may become a bottleneck.

We compared the average number of data items scanned by three algorithms:
LWF, RxW and Bucketing. FCFS is not included in this experiment. It just
broadcasts the request that has arrived first, and does not need to compare any
entry. On the other hand, its overall waiting time is so bad that it is not a
competitive algorithm to be used.

As depicted in Fig. 6, LWF has the highest decision overhead while Bucketing
algorithm has the lowest. The overhead of RxW is in between. Compared to
other algorithms, Bucketing algorithm examines significantly fewer number of
requests at each scheduling decision. For a request rate of 10 requests per tick,



Evaluation of a Broadcast Scheduling Algorithm 193

Fig. 6. Decision overhead

LWF compares 130 times more entries and RxW compares 36 times more entries
than that of Bucketing algorithm3.

4.7 Improving the Bucketing Algorithm

We have tried to improve the mean waiting time of our Bucketing algorithm and
implemented the depth approach as presented in Sect. 3.2. There is a trade-off
between the decision overhead and the mean waiting time in this approach. As
we increase the search depth, we need to compare more entries of ATWT values,
and we obtain lower mean waiting time. When we set the depth parameter to
50, the resulting mean waiting time of Bucketing algorithm is less than that of
RxW as can be seen in Fig. 7.

5 Conclusion

In this paper, the problem we attack is the design of a broadcast scheduling al-
gorithm which efficiently meets the demands of a mobile computing environment
and mobile users. We have first proposed a new broadcast scheduling heuristic,
ATWT, which is an approximate version of LWF heuristic [19]. Then, we have
developed an algorithm called Bucketing algorithm to implement ATWT heuris-
tic by using a bucketing scheme. Finally, we have conducted extensive simulation

3 In [5], approximate versions of the RxW algorithm are proposed and they are shown
to lead to less comparisons in deciding which data item to broadcast. However, these
approximate versions have worse mean waiting time compared to RxW. The Buck-
eting algorithm, as discussed in Sect. 4.3, produces almost the same mean waiting
times as RxW, while leading to less scheduling decision overhead.



194 M. Karakaya and Ö. Ulusoy

Fig. 7. Bucketing algorithm with depth=50 and the other competitive algorithms

experiments to evaluate the performance of our algorithm, and to compare the
performance results against those of previously proposed scheduling algorithms.

Considering the performance results, the first remark to be done is that the
most competitive algorithm to our algorithm is RxW [5]. The other algorithms,
except LWF, do not produce good results with respect to the main performance
criterion, the overall mean waiting time. Although, LWF has better performance
than all the others, it has serious drawbacks which prevent its practical usage. In
terms of the other performance metrics, i.e., variance of waiting time and worst
waiting time, the performance of Bucketing algorithm is better, in general, than
that of all other scheduling algorithms.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: Data manage-
ment for asymmetric communication environments. Proceedings of ACM SIGMOD
(1995) 199–210

2. Acharya, S., Franklin, M., and Zdonik, S.: Balancing push and pull for data broad-
cast. Proceedings of ACM SIGMOD Conference. Tuscon, Arizona. (1997)

3. Acharya, S., M., Franklin, J., Zdonik, S.: Dissemination-based data delivery using
broadcast disks. IEEE Personal Communications. 2(6) (December 1995) 50–60

4. Aksoy, D., Franklin, M.: Scheduling for large-scale on-demand data broadcasting.
Proceedings of the IEEE INFOCOM Conference. (1998) 651–659

5. Aksoy, D., Franklin, M.: Rxw: A scheduling approach for large-scale on-demand
data broadcast. ACM/IEEE Transactions on Networking. 7 (1999) 846–860

6. Ammar, M., H., Wong, J., W.: The design of teletext broadcast cycles. Performance
Evaluation. 5 (November 1985) 235–242

7. Ammar, M., H., Wong, J., W.: On the optimality of cyclic transmission in teletext
systems. IEEE Transactions on Communications. 35 (January 1987) 68–73



Evaluation of a Broadcast Scheduling Algorithm 195

8. Barbara, D.: Mobile computing and database: A survey. IEEE Transactions on
Knowledge and Data Engineering. 11 (January-February 1999) 108–117

9. Barbara, D., Imielinski, T.: Sleepers and workaholics: Caching strategies in mobile
environment. ACM SIGMOD RECORD. 23 (May 1994)

10. Hameed, S., Vaidya, N.,H.: Log-time algorithms for scheduling single and multiple
channel data broadcast. Proceedings of the Third Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking. Budapest, (September
1997) 90–99

11. Hameed, S., Vaidya, N.,H.: Efficient algorithms for scheduling data broadcast.
Wireless Networks. 5 (1999) 183–193

12. Imielinski, T., Badrinath, B., R.: Mobile wireless computing: Challenges in data
management. Communications of the ACM (October 1994) 19–27

13. Jiang, S., Vaidya, N., H.: Response time in data broadcast systems: Mean, variance
and trade-off. Proceedings of International Workshop on Satellite-based Informa-
tion Services (WOSBIS). (October 1998)

14. Jiang, S., Vaidya, N., H.: Scheduling data broadcasting to “impatient” users. Pro-
ceedings of the ACM International Workshop on Data Engineering for Wireless
and Mobile Access. Seattle, WA USA, (August 1999) 52–59

15. Karakaya, M., Ulusoy, Ö.: An efficient broadcast scheduling algorithm for pull-
based mobile environments. Submitted to the IEEE/ACM Transactions on Net-
working.

16. Schwetman, H.: Csim18 the simulation engine. In J., Charnes, D., Morrice, D.,
Brunner, J., Swain, editors. Proceedings of the 1996 Winter Simulation Conference.
San Diego, CA, (1996) 517–521

17. Vaidya, N., H., Hameed, S.: Scheduling data broadcast in asymmetric communi-
cation environments. Wireless Networks. 5 (1999) 171–182

18. Vaidya, N., H., Jiang, S.: Data broadcast in asymmetric wireless environments.
Proceedings of First International Workshop on Satellite-based Information Ser-
vices (WOSBIS). NY, (November 1996)

19. Wong, J., W.: Broadcast delivery. Proceedings of The IEEE. 76 (December 1988)
1566–1577

20. Zipf, G., K.: Relative frequency as a determinant of phonetic change. XL.
Reprinted from the Harvard Studies in Classical Philiology. (1929)



An Architecture for Workflows Interoperability
Supporting Electronic Commerce�

Vlad Ingar Wietrzyk1, Makoto Takizawa2, and Vijay Khandelwal1

1 School of Computing, University of Western Sydney
v.wietrzyk@uws.edu.au, Australia

2 Department of Computures and Systems Engineering
Tokyo Denki University, Japan

Abstract. D istributed object architectures (DCOM, CORBA, Java RMI)
coupled with Internet and Intranet technology have a great impact on
process–centered environments and distributed workflow management.
Management of the workflow operations of each organisation in the in-
terworkflow must be done in a distributed environment.
An electronic commerce (EC) process is a business process and defining
it as a workflow provides all the advantages that come with this technol-
ogy. This paper describes the design of a model as well as an architecture
to provide support for distributed advanced workflow transactions. The
componentwise architecture of the system makes it possible to incorpo-
rate the functionality and thus the complexity only when it is actually
needed. We discuss the application of transaction concepts to activities
that involve integrated execution of multiple tasks over different pro-
cesses. This kind of application is described as transactional workflows.

1 Introduction

Distributed workflow execution across functional domains is necessary, but distri-
bution transparency is currently impossible because, different types of Workflow-
Management-Systems (WFMSs) implement different WFMS metamodels.

For smooth cooperation among organizations, the most important point is
how the hierarchy of the cooperation process among organizations realizes. We
can call the interoperation of workflows iterworkflow and the total support tech-
nologies, which are necessary for its realization, interworkflow management mech-
anism. Interworkflow is anticipated as a supporting mechanism for Business-to-
Business Electronic Commerce.

One possible way to enable distributed workflow execution is to build a
workflow-management infrastructure integrating different and heterogeneous WFMSs.
Users would have access to total funcionality because they access the workflow-
management underlying infrastructure, not individual WFMSs. The resulting
architecture is general and can accommodate as many WFMSs as required.

� Research supported by the UWS, Versant Technology Corporation and Intel
Corporation

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 196−209, 2001.
#� Springer-Verlag Berlin Heidelberg 2001



Transaction concepts have begun to be applied to support applications or ac-
tivities that involve multiple tasks of possibly different types - including, but not
limited to transactions, and executed over different types of entities - including
DBMSs. The architect of such applications may specify inter-task dependencies
to define task coordination requirements, and additional requirements for iso-
lation, and failure atomicity of the application. Generally we will refer to such
applications as multi-system transactional workflows.

Workflow applications are long-duration applications since the duration of a
workflow can range from a few hours to a few months.

To summarize, the new aspects of our approach to distributed workflow
database management systems supporting e-commerce include the following re-
searh contributions. The novel approach to the notions of correctness for trans-
action processing. Usually proposed the definition of correctness for multiuser
databases are not necessarily suitable when these databases are parts of a mul-
tilevel secure workflow systems. We believe, that the best approach will depend
upon the characteristics of the multilevel workflow database and the applica-
tions.

Designing the high scalability and secure architecture enabling efficient e-
commerce operations which allows an arbitrary combination of transaction sup-
port systems and workflow management systems to which the locations are ir-
relevant is an objective of our ongoing research.

1.1 Outline of the Paper

We have planned the presentation of the current research as follows. We first
present a brief introduction to work on workflow transaction models and discuss
extended – relaxed approach to handle workflow transactions in section 2. Section
3 covers related aspects of workflow distribution and heterogeneity. A number of
relaxed transaction models in workflow contexts that have been defined recently
permitting a controlled relaxation of the transaction isolation and atomicity to
better match the requirements of various workflow applications are discussed in
section 4. In section 5 we consider two aspects of workflow interoperability: the
interoperability protocol between independent WFMSs and the ability to model
the interoperability in a workflow process definition tool. Section 6 concludes the
paper with a summary and a short discussion of future research.

2 Related Work

Some known examples of extended transaction models include nested and multi-
level transactions. A number of relaxed transaction models have been defined in
the last several years that permit a controlled relaxation of the transaction isola-
tion and atomicity to better match the requirements of various advanced appli-
cations. Some examples of extended – relaxed transaction models are reported
in [1, 2].

197An Architecture for Workflows Interoperability Supporting Electronic Commerce



In the WIDE project [3], a workflow is supported at two transaction levels:
global and local. At the global level, the SAGA - based model offers relaxed
atomicity through compensation and relaxed isolation by limiting the isolation
to the SAGA steps. At this level of granularity the workflow activities are defined
and therefore the grouped workflow activities follow the strict ACID properties.
However, the flexibility in assigning transaction properties to workflow activities
is limited to the extended SAGA or nested transaction model.

Support for long-duration applications has been independently extended by
practitioners and researchers focusing on workflow systems and transaction sys-
tems. Extended transaction systems structure a large transaction into sub-transactions
and execute them with additional constraints on the individual sub-transactions.
Some researchers in workflow systems have proposed the notion of transactional
workflow [4]. In transactional workflow environment, additional correctness re-
quirements can be specified on top of traditional workflow specifications.

The Workflow Management Coalition has specified a standard interface to
facilitate the interoperability between different WFMSs [5]. However, they do
not address transactional issues with the exception of writing an audit log.

The transaction model used in the Exotica project [6] is based on the SAGA
model, but relies on statically computed compensation patterns. As a result, its
functionality is limited compared to the work presented in this research paper.

Finally, most commercial products are designed around a centralized database.
This database and the workflow engine attached to it — in most cases there is
a single workflow engine are a single point of failure which quickly become a
bottleneck and are not capable of providing a sufficient degree of fault tolerance.

To summarize, databases and workflow management systems are comple-
mentary tools within the corporate computing resources. Databases address the
problem of storing and access data efficiently. Workflow management systems
address the problem of monitoring and coordinating the flow of control among
heterogeneous activities.

3 Workflow Distribution and Heterogeneity

Management of the workflow operations of each organization in the interwork-
flow must be done in a distributed environment. Because the interworkflow de-
fines the process of linking among different workflows, naturally the operations
management takes place across different workflows. The interworkflow for inter-
national procurement, for example, includes the procurement workflow and also
the ordering/delivery management workflow of each supplier company; and these
workflows are likely to be distributed across the procuring company’s system and
the systems of each of the supplier companies.

Workflow distribution introduces additional level of requirements. Because
distributed workflow execution across heterogeneous WFMSs is currently not
possible in a transparent way, we must to consider the problem of workflow
funcionality isolation.

198 V.I. Wietrzyk, M. Takizawa, and V. Khandelwal



To efficiently define a work breakdown structure a functional decomposition
by means of subworkflows is required. This in turn requires version and variant
management, because each reused-workflow-definition alteration might lead to
a new variant or configuration of the reusing workflow definition, if it necessi-
tates to stay related to the old version. Dynamic changes of running workflows
require a workflow’s functional decomposition to change. This might also involve
replacing elementary workflow tasks with other composite workflow definitions.
Workflow distribution is called homogeneous if the associated WFMSs are of
the same type, heterogeneous otherwise. If the involved WFMSs are heteroge-
neous, this might nessecitate data, (object)-type translation on the side of the
requesting or receiving WFMS. A workflow is distributed when at least two of its
objects reside in two different WFMS installations. This is relevant to workflow
definitions as well as workflow instances. An often-cited situation is subworkflow
distribution, where subworkflows are subject to excution on remote WFMSs.
Some variants are possible, such as executing a subworkflow synchronously or
asynchronously to the invoking workfow. One of the typical variant involves
executing some part of a workflow on one WFMS, and continuing on another
(see Figure 1). If the associated WFMSs, do not know about each other, it’s

WFMS 1 WFMS 2
WFMS 3

WFMS 4

Fig. 1. Workflows Division across different WFMSs

indirect distribution. In this case, the WFMSs do not implement distribution
natively, and system designer must attach distribution functionality to the asso-
ciated WFMSs. A recognised way is to establish communication buffers between
the WFMSs, such as a database or persistent file stores. Figure 2 shows an
example workflow definition with one distribution task. The distribution task
invokes an application for buffer communication. Typically, workflow types can
be distributed, too.

3.1 An Architecture for Multilevel Secure Workflow Interoperability

Global information management strategies based on a sound distributed ar-
chitecture are the foundation for effective distribution of complex applications

199An Architecture for Workflows Interoperability Supporting Electronic Commerce



that are needed to support ever changing operational conditions across security
boundaries. What we need is a new Multilevel Secure Workflow (MLS) dis-
tributed computing paradigm that can assist users at different locations and at
different security levels to cooperate.

A user can initiate a distributed workflow transaction at any site. If access to
objects stored at remote sites is required, the distributed workflow transaction
initiates a subtransaction at the remote site. To guarantee correct execution of
distributed workflow transactions, each site in the distributed workflow database
is under the operation of a concurrency control protocol and an atomic commit
protocol.

We present the fully distributed architecture for implementing a Workflow
Management System (WFMS). An MLS workflow distributed database consists
of a set N of sites, where each site N ∈ N is an MLS database. The sites in
the workflow system are interconnected via communication links over which they
can communicate. The WFMS architecture operates on top of a Common Object
Request Broker Architecture (CORBA) implementation. A CORBA’s Interface
Definition Language (IDL) is used to provide a means of specifying workflows.
Also we assume that communication links are secure — possibly using encryp-
tion. This distributed workflow transaction processing model describes mainly
those components necessary for the distribution of a transaction on different
domains.

Application for buffer - communication
policy

Distribution task

Fig. 2. The Distribution Task Invokes an Application for Buffer Communication

Domain is a unit of autonomy that owns a collection of flow procedures and
their instances. In practical terms, a domain might define the scope of a depart-
ment or division in an organization. Therefore, flows are grouped by domains,
and each domain also manages a set of flow procedures installed in the domain.
A domain is not defined or limited by networks, processors, or peripherals. The
manager of resources can, however, be designed in any fashion, they are ex-
clusively responsible for the ACID properties on their data records. Solely the
interface to the components of the distributed workflow model must exist.

200 V.I. Wietrzyk, M. Takizawa, and V. Khandelwal



If a transaction should be dstributed on several domains — a global trans-
action, in every domain there must exist the following components, (see Figure
3).

Communication with Another
(Subordinator Node

Communication
Resource
Managers
(CRMs)

Semantic
Transaction

Manager
(TM)

OSI TP

Resource
Managers

(RMs)

XAP-TP

XA+XA

Administration & Monitoring Service

TxRPC
IDL

SQL TX

Workflow Database

Sched
.

TSM 1

Sched
.

TSM 1

Sched
.

TSM 1
Sched

.

TSM 1

Sched
.

TSM 1

Task  1

Task  1

Task  1Task  1

Task  1

IDL

IDL IDL

IDL

IDL

Fig. 3. Distributed Workflow Architecture

– TM - Transaction–Manager. The transaction manager plays the role of the
coordinator in the respective domain. If a transaction is initiated in this
domain, the TM assigns a globally unique identifier for it. The TM monitors
all actions from applications and resource managers in its domain. In every
domain involved in the distributed workflow transaction environment there
exists exactly one TM.

– CRM - Communication–Resource–Manager. Multiple applications in the same
domain talk with each other via the CRM. This module is used by applica-
tions but also other management components for inter-domain communica-
tion. CRM is the most important module with respect to the transactional

201An Architecture for Workflows Interoperability Supporting Electronic Commerce



support for distributed workflow executions. Our model specifies the T*RPC
as a communication model, which supports a remote procedure call (RPC)
in the transactional environment.

– RM - Resource–Manager. An accountable performer of work. A resource can
be a person, a computer process, or machine that plays a role in the workflow
system. This module controls the access to one or more resources like files,
printers or databases. The RM is responsible for the ACID properties on
its data records. A resource has a name and various attributes defining its
characteristics. Typical examples of these attributes are job code, skill set,
organization unit, and availability.

– AMS - Administration–Monitoring–Service. The monitoring manager is used
to control the workflow execution. In our approach, there is no centralized
scheduler. In the figue, each Task Manager - designated as TSM, is equipped
with a conditional fragment of code which determines if and when a given
task is due to start execution. The scheduler communicates with task man-
agers using CORBA’s asynchronous Interface Definition Language(IDL) in-
terfaces. Task managers communicate with tasks using synchronous IDL
interfaces as well. AMS module is also responsible for the coordination of
the different sites in case of an abort that involves multiple sites. Individual
task managers communicate to monitoring manager their internal states, as
well as data object references - for possible recovery.

The distributed architecture suits the inherent distributional character of
workflow adequately in a natural way.

This approach also eliminates the bottleneck of task managers having to
communicate with a remote centralized scheduler during the execution of the
workflow. This architecture also posseses high resiliency to failures — if any one
node crashes, only a part of the workflow is affected.

4 Relaxed Transaction Models in Workflow Contexts

A number of relaxed transaction models have been defined recently that per-
mit a controlled relaxation of the tranaction isolation and atomicity to better
match the requirements of various workflow applications. Usually, we will refer
to such applications as multi-system transactional workflow. This area has been
also influenced by the concept of long running activities.

The intenton is to merge advanced transaction technology and workflow man-
agement systems to support business processes with well-defined failure seman-
tics and recovery features. Our work is based on an interpretation of the workflow
operations from the database point of view.

As has been pointed out in [7], WFMSs lack the ability to ensure the correct-
ness and reliability of the workflow execution in the presence of concurrency and
failures. When the task is a transaction executed by a DBMS providing a full
range of transaction management functions, we can take advantage of its con-
currency control, commitment, recovery and access permit facilities. However,

202 V.I. Wietrzyk, M. Takizawa, and V. Khandelwal



when the task is executed by an application system, we must understand the
application system semantics that affects its transactional behavior.

4.1 Transactional Workflows

Support for workflow applications has been addressed by researchers focusing on
workflow systems and transaction systems. Extended transaction systems struc-
ture a large transaction into sub-transactions and execute them with additional
precedence requirements between start – commit – abort of the individual sub-
transactions. Our approach falls in the category of transactional workflows [4]
where additional correctness requirements can be specified on top of traditional
workflows specifications. These requirements specify additional constraints on
workflow execution schedules. Workflow management systems coordinate the
execution of applications distributed over networks. The need for coordinated
execution of workflow steps arises from application as well as data consistency re-
quirements. Flexible transactions work in the context of heterogeneous distributed
multidatabase workflow environments [8]. In such workflow environments, each
database acts independently from the others. Because a local database can uni-
laterally abort a transaction, it is not possible to enforce the commit semantics
of global transactions. Therefore, flexible transaction were designed to address
this problem.

4.2 The Functionality of Flexible Transactions in Workflow Systems

A flexible transaction is specified by providing: the precondition of the global
transaction, a set of subtransactions, the externally visible states of each sub-
transaction and the possible transitions among these externally visible states,
preconditions and postconditions for the possible transitions of each subtrans-
action, and the postcondition of the global transaction.

The traditional transactions are usually characterized by the atomicity, con-
sistensy, isolation and durability requirements, called the ACID properties of
transactions. To better support workflow operational environment, the flexible
transaction model relaxed the isolation and atomicity properties. This approach
is the direct result of our believe, that tying a workflow system to a particular
transaction model, will result in major restrictions that will limit its applicaility
and usefulness as a workflow tool.

4.3 A Formal Model of Flexible Transactions

From a user’s point of view, a transaction is a sequence of actions performed on
data items in a database. Flexible transaction model proposed for the distributed
workflow environment will increase the failure resiliency of global transactions
by allowing alternate subtransactions to be executed when a local database fails
or a subtransaction aborts. The approach supports the concept of varied trans-
actions allowing compensatable and noncompenstable subtransactions to coexist

203An Architecture for Workflows Interoperability Supporting Electronic Commerce



within a single global transaction. This transactional environment allows a global
transaction to have a weaker (relaxed) form of atomicity, termed semi-atomicity,
while still maintaining its correct execution in the workflow. In a workflow mul-
tidatabase environment, a local transaction is a set of subtransactios, where each
subtransaction is a transaction accessing the data items at a single local site. The
concurrency control of global transactions require, that each global transaction
has at most one subtransaction at each local site [9]. Following [8, 10], the def-
inition of flexible transactions takes the form of a high-level specification. The
flexible transaction model supports flexible execution control flow by specifying
two kinds of dependencies among the subtransactions of a global transaction:

– Execution ordering dependencies between two subtransactions.
– Alternative dependencies between two subsets of subtransactions.

In what follows, we shall formally describe the flexible execution control in
the flexible transaction model.

Let Ω = {t1, t2, . . . , tn} be a collection of subtransactions and Π(Ω) the
collection of all subsets of Ω. Let ti, tj ∈ Ω and Ti, Tj ∈ Π(Ω). Two types of
control flow relations are defined on the subsets of Ω and on Π(Ω), namely:

– precedence ti ≺ tj if ti precedes tj (i �= j);
– preferece Ti � Tj if ti is preferred to Tj (i �= j). If Ti � Tj , we also declare

that Tj is an alternative to Ti.

Both of the above relations, precedence and preference are irreflexive and
transitive or more formally, for each ti ∈ Ω, ¬(ti ≺ ti); and for each Ti ∈ Π(Ω),
¬(Ti � Tj). If ti ≺ tj and tj ≺ tk, then ti ≺ tk; if Ti � Tj and Tj � Tk, then
Ti � Tk.

From he above definitions, we can see than, the precedence relations deter-
mines the correct parallel and sequential execution ordering dependencies among
the subtransactions, while the preferece relation determines the priority depen-
dencies among alternate sets of subtransactions for selecting in completing the
execution of Ω.

Now a flexible transaction can be defined as follows:

Definition 1. Flexible transaction A flexible transaction Ω is a set of related
subtransactions on which the precedence (≺) and preference (�) relations are
defined.

The semantics of the precedence relation refers to the execution order of
subtransactions. For example, t1 ≺ t2 may imply that t2 cannot start before
t1 finishes or that t2 cannot finish before t1 finishes. By the same token, the
preference relation defines alternative choices and their priority. For example,
{ti} � {tj , tk} may imply that tj and tk must abort when ti commits or that
tj and tk should not be executed if ti commits. In this environment, {ti} is of
higher priority than {tj , tk} to be chosen for execution.

We consider that a workflow database state is consistent if it preserves work-
flow database integrity constraints. As it is the case for traditional transactions,

204 V.I. Wietrzyk, M. Takizawa, and V. Khandelwal



the execution of a flexible transaction as a single unit should map one consis-
tent multidatabase workflow state to another. We designate relation (Ti,≺i) as
a partial order of subtransactions. (Ti,≺i) is a representative partial order, if the
execution of subtransactions in Ti represents the execution of the entire flexi-
ble transaction Ω. From the above it is clear that, if (Ti,≺i) is a representative
partial order, then there are no subsets Ti1 and Ti2 of Ti such that Ti1 � Ti2.
Because each global transaction has at most one subtransaction at a local site,
each representative partial order of a flexible transaction must have at most one
subtransaction at a local site. In our workflow execution environment, for flexi-
ble transactions, the above definition of consistency requires that the execution
of subtransactions in each representative partial order must map one consistent
workflow multidatabase state to another.

4.4 Scheduling of Flexible Transactions

Since the flexible transaction model was proposed, much research has been de-
voted to its application. The availability of visible prepare–to–commit states in
local database systems is the basic assumption underlying this work. In such an
operational environment, the preservation of the semi-atomicity of flexible trans-
actions is relatively easy. As we mentioned in the previous subsection, failures
of subtransactions in a flexible transaction are tolerated by taking advantage of
the fact that a given function can frequently be accomplished by more than one
database system. Also, time used in conjunction with subtransaction and global
transaction can be exploited in transaction scheduling.

A schedulable subtransaction may be submitted for execution to the transac-
tion module. The scheduler first has to check for satisfaction of the preconditions
for execution of each subtransaction — it determines whether a subtransaction
is schedulable. This entails the specification of the execution dependency among
the subtransactions of a global transaction. Execution dependency [4], is a re-
lationship among subtransactions of a global transaction which determines the
legal execution order of the subtransactions. To support the specification of the
execution dependency, we define a transaction execution state as follows:

Definition 2. The transaction execution state x for a global transaction T with
m subtransactions, is an m− tuple (x1, x2, . . . , xm) where:

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E if ti is currently being executed;
N if subtransaction ti has not been

submitted for execution;
S if ti has successfully completed;
F if ti has failed or completed without

achieving its objective;

Under normal operational circumstnces transaction execution state is used to
keep track of the execution of the workflow subtransactions. It is also used to

205An Architecture for Workflows Interoperability Supporting Electronic Commerce



determine if a global workflow transaction has achieved its objectives. When a
subtransaction ti complete the corresponding execution state, xi is set to S if the
subtransaction has achieved its objective, and to F , therwise. At a certain point
of execution, the objectives of the global workflow transaction may be achieved.
At that point, the global transaction is considered to be successfully completed
and can be committed.

A number of approaches can be used to assure global serializability which
constitutes a satisfactory correctness criterion for concurrent execution of multi-
database workflow transactions, if there is a lack of additional information about
their semantics. The objective of concurrency control is to assure that the serial-
ization order of multidatabase workflow transactions should be the same, at all
sites they execute. It was shown in [8, 11], that the above condition is sufficient
to assure global serializability. However, in our workflow operational environ-
ment this requirement can be relaxed to require that the relative serialization
order of Workflow Transactions should be the same only at those nodes where
they conflict. This would lead to a weaker notion of serializability; called WT-
serializability, which will be used as our correctness criterion for concurrent execu-
tion of Workflow Transactions. We define conflict among workflow transactions if
they execute at the same (local) site, and they are not commutative. The conflict
relation is transitive, and therefore determines a set of equivalence classes, which
can be named as conflict classes. In our workflow environment they are used to
determine the granularity of locking. In order to define workflow transaction se-
rializability; WT-serializability, let us consider two workflow flexible transactions
WTα and WTβ , and conflict classes, i and j. A global schedule is WT-serializable

if for any subtransactions STα
i and STα

j ∈WTα, and ST β
i and ST β

j ∈ WTβ such
that conflict (STα

i , ST β
i ) and conflict (STα

j , ST β
j ), STα

i ≺ ST β
i ⇒ STα

j ≺ ST β
j ,

at all sites they conflict. In our workflow environment the ≺ relationship is de-
fined in terms of local serializability. WT-serializability establishes a partial order
among all workflow flexible transactions. The submission order at each system,
can be used to determine the execution and, consequently, the serialization order
at each site. Therefore, the concurrency control mechanism of the local system
will assure that the transactions that are submitted to the local system will be
executed correctly with respect to the local concurrency control. As a result,
the lock held by a subtransation can be released as soon as the subtransaction
completes its submission phase. Therefore, we will have several transactions that
are executing concurrently at each local site.

5 Interworkflow Management Mechanism

Composing an MLS workflow from multiple single-level workflows is the only
practical way to construct a high-assurance MLS WFMS today. In this particular
approach, also the multilevel security of our MLS workflow does not depend on a
single-level WFMS, but rather on the underlying MLS distributed architecture.
On our platform, an MLS workflow becomes multiple single-level workflows that
will be run on the MLS architecture. These independent workflows should work

206 V.I. Wietrzyk, M. Takizawa, and V. Khandelwal



together to achieve the intended operation. Therefore, workflow interoperability
is an important issue.

We should consider two aspects of workflow interoperability:

– The interoperability protocol between independent WFMSs.
– The ability to model the interoperability in a workflow process definition

tool.
The first issue can be defined and handled by a standards body such as OMG.
However, the second aspect should be handled by each WFMS. OMG [12] intro-
duces two models of interoperability. They are nested sub-process and chained
processes as shown in Figures 4 and 5.

Workflow  A

Workflow  B

Fig. 4. Nested sub-process

Workflow  A

Workflow  B

Fig. 5. Chained processes

In nested sub-process workflow design, a task in workflow A may invoke
workflow B in a role as the actor of a particular task and then wait for it to
complete. Therefore, the task in workflow A is a requester, and the task that is
realized by the sub-process can act as the coordination point for interaction of
the two workflows.

In chained workflow design, a task may invoke another, then carry on with
its own business processing logic. In this case, the task associated with the
sub-process would be another entity that is stimulated by the results of the
sub-process. The workflows will terminate independently of each other. The
nested sub-process and chained processes models provide powerful mechanisms
for workflow interoperability.

However, we would like to extend the above two models to support a richer
interoperability model: cooperative processes. Very offen there is a need to con-
sider two independent autonomous workflows that need to cooperate across two

207An Architecture for Workflows Interoperability Supporting Electronic Commerce



different organizations. Let’s assume that organization A is in control of work-
flow A and Organization B is in charge of workflow B. Than, tasks in workflow
A and workflow B can communicate and synchronize with each other as shown
in Figure 6. Generally, two or more cooperating workflows may have indepen-

Workflow  A

Workflow  B

Fig. 6. Cooperative processes

dent starting and ending points. Let’s state a minimal set of information that
is required for communication and synchronization among tasks in cooperating
autonomous workflows. These should include:

– protocol to establish the location and invocation method of tasks
– protocol to coordinate receiving of replies

In order to ensure the proper generation of the runtime code, the above specifi-
cation has to appear in the workflow design. Such environment will guarantee,
that execution will proceed according to the workflow control protocol.

6 Conclusion

The impetus for our current research is the need to provide an adequate frame-
work for interworkflow as it is anticipated that it will be a supporting mechanism
for Business-to-Business Electronic Commerce. We proposed the following aux-
iliery functions as a necessary mechanism for implementing operations manage-
ment of workflows in a disributed environment to support Electronic Commerce:

– A mechanism for controlling execution of workflows designed on other work-
flow management systems.

– A mechanism for moitoring the status of workflows running on other work-
flow management systems.

– The global-business characteristic of Electronic Commerce workflows re-
quires a high-throughput workflow execution engine. Therefore, to ensure
this kind of scalability, load distribution across multiple workflow servers is
necessary.

– The necessity of efficient replication of workflow servers. This will ensure
that the market position of the merchant will not be weakend due to frequent
failures and unavailability of Electronic Commerce servers.

208 V.I. Wietrzyk, M. Takizawa, and V. Khandelwal



The notions of correctness for transaction processing that are usually pro-
posed for multiuser databases are not necessarily suitable when these databases
are parts of a multilevel secure workflow systems. We believe, that the best ap-
proach will depend upon the characteristics of the multilevel workflow database
and the applications. It is incumbent upon those who develop multilevel database
systems to ensure that the user’s needs and expectations are met to avoid mis-
understandings about the system’s functionality.

The insight developed in the current research serves as the basis for the next
step, which is to build application specific software architecture that encode
business logic for coordinating widely distributed manual and automated tasks
in achieving enterprise level objectives.

We choose to develop framework for distributed workflow architecture as
the foundation of workflows interoperability supporting e-commerce. There are
some aspects of workflows interoperability supporting e-commerce which needs
to be addressed to make the distributed workflow architecture more useful. In
our future work we will focus on providing support for adaptive workflow so that
workflow can be altered at runtime.

References

1. V. Wietrzyk, Mehmet A. Orgun. A Foundation for High Performance Object
Database Systems. In Databases for the Millennium 2000 in proceedings of the 9th
International Conference on Management of Data, Hyderabad, December, 1998.

2. A. Elmagarmid. Transaction Models for Advanced Database Applications.
Morgan-Kaufmann, February 1992.

3. G. Grefen, B. Pernici, G. Sanchez. Database Support for Workflow Mnagement -
The WIDE Project. In Kluwer Academic Publishers, August 1999.

4. M.Rusinkiewicz and A. Sheth. On transactional Workflows. Bulletin of the Tech-
nical Committee on Data Engineering. (June 1993).

5. The Workflow Management Coalition Interoperability Abstract Specification. The
Workflow Management Coalition , June 1996

6. G. Alonso and D. Agrawal Advanced transaction Models in Workflow Contexts.
Procs. Int. Conf. on data Engineering. 1996.

7. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3(2):119-153, April 1999.

8. A. K. Elmagarmid, Y. Leu, W. Litwin, and M. E. Rusinkiewicz. A Multidatabase
Model for Interbase. In Proc. of the 16th VLDB Conference, August 1990.

9. V. Gligor and R. Popescu-Zeletin. Transaction Maagement in Distributed Hetero-
geneous Database Management Systems. In Information Systems, 11(4), 1986.

10. A. Zhang, M. Nodine, B. Bhargava, O. Bukhres Scheduling with Compensation in
Multidatabase Systems. In CSD-TR-93-063, 11(4), October 1993.

11. M. Ansari, M. Rusinkiewicz, L. Ness, A. Sheth Executing Multidatabase Systems.
In TM-TSV-019450, July 1991.

12. Object Management Group. The Object Request Broker. Architecture and Speci-
fication, 2000.

209An Architecture for Workflows Interoperability Supporting Electronic Commerce



Object and Log Management in Temporal Log-Only
Object Database Systems

Kjetil Nørvåg�

Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

Abstract. We have previously studied the possible performance gain from using
the log-only approach to realize temporal object database systems. Although the
log-only approach in its basic form is relatively straightforward, it is not trivial to
support features such as steal/no-force buffer management, fuzzy checkpointing,
and fast commit. In this paper, we describe in detail algorithms and strategies for
object and log management that make support for these features possible.

1 Introduction

Many emerging application areas for database systems demand features and performance
difficult to support by todays systems. Common for many of these, is the need for
management of complex objects, support for temporal objects, and support for querying
changes (for example, updates since a particular time T ). Examples of such application
areas are XML/Web databases, geographical information systems and PACS (Picture
Archiving and Communications Systems for use in health care).

An interesting solution to support the desired features, is log-only object database
systems. The log is written contiguously to the disk, in a no-overwrite way, in large blocks.
This is done by writing many objects and index entries, possibly from many transactions,
in one write operation. This gives good write performance, but possibly at the expense of
read performance. This contrasts to most current object database systems (ODBs), where
data is updated in-place. In order to support recovery and increase performance, write-
ahead logging can be used. This logging defers the in-place update, but sooner or later,
the update has to be done. This often results in the writing of lots of small objects, creating
a write bottleneck. This bottleneck can be avoided by using the log-only approach.

The log-only approach has many features that makes it interesting. Two examples are
fast recovery and ability to benefit more from using RAID technology than traditional
systems. A third feature, which is the motivation for our research, is the fact that keeping
previous versions of objects comes almost for free when using a log-only approach. This
is particularly interesting for transaction-time object database systems (TODB), where
object updates do not make previous versions unaccessible. On the contrary, previous

� The author supported in part by NFR (Research Council of Norway) and ERCIM (European
Research Consortium for Informatics and Mathematics).

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 210–224, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Object and Log Management in Temporal Log-Only Object Database Systems 211

versions of objects can still be accessed and queried, and a system maintained timestamp
(commit time of the transaction that created a version of an object) is associated with
every object version. In a traditional system with in-place updating, keeping old versions
of objects, which is required in a transaction-time temporal database system, usually
means that the previous version has to be copied to a new place before update. This
doubles the write cost. With the log-only approach, this is not necessary.

Previous log-only object database systems have been page server based. While this
works well in many contexts, it is not ideal. By operating on page granularity you get
many of the disadvantages of traditional pager servers. For example, if clustering is bad,
and only a small part of a page has been updated, it is still necessary to write back the
whole page. With bad clustering, main memory buffer utilization will be bad as well.
A page based log-only ODB also makes transaction management difficult. To avoid
page level locking, you essentially need to have 1) a separate log anyway, or 2) use ad-
hoc techniques to solve the problem. Both solutions are likely to hurt performance and
increase complexity, and have together with performance analysis of log-only TODBs [3]
convinced us that an object based log-only TODB is the way to go.

Although the log-only approach in its basic form, and using page granularity, is
relatively straightforward, more effort is needed in order to achieve performance and high
concurrency. In this paper, we describe the Vagabond approach for efficient storage and
management of temporal objects. With the Vagabond approach, some of the problems in
related designs are avoided, and steal/no-force buffer management, fuzzy checkpointing
and fast commit is supported.

The organization of the rest of the paper is as follows. In Sect. 2 we give an overview
of related work. In Sect. 3 we describe the Vagabond log-only approach. In Sect. 4
we describe in detail the algorithms for the most important operations in the Vagabond
approach. Finally, in Sect. 5, we conclude the paper.

2 Related Work

No-overwrite strategies have been used in shadow-paging recovery strategies earlier,
e.g., in System R [1], but with the limited buffer size at that time, the performance was
not satisfactory. POSTGRES [9] also employed a no-overwrite strategy, but had also
its performance problems for several reasons, the most important being the buffer force
strategy used.

The Vagabond approach is based on the same philosophy as log-structured file sys-
tems (LFS), which was introduced by Rosenblum and Ousterhout [7]. LFS has been
used as the basis for object stores, including the Texas persistent store [8]. Those object
stores are page based, i.e., when an object has been modified, the whole page it resides
on has to be written back. To our knowledge, there has been no publications on log-only
ODBs operating on object granularity as in the Vagabond approach.

A discussion of some topics related to TODBs can be found in [4]. More details
about the Vagabond approach can be found in the author’s doctoral thesis [6].



212 K. Nørvåg

3 The Vagabond Approach

In this section we give an overview of our approach to log-only TODBs. We give an
overview of log management, storage objects, and indexing.

3.1 Introduction to Log-Only Log Management

With the log-only approach, already written data is never modified, new versions of the
objects are just appended to the log. Logically, the log is an infinite length resource,
but the physical disk size is, of course, not infinite. This problem is solved by dividing
the disk into large, equal sized, physical segments. When one segment is full, writing
is continued in the next available segment. As data is vacuumed, deleted or migrated to
tertiary storage, old segments can be reused. Dead data, in a TODB most often old index
nodes, will leave behind partially filled segments, the data in these near empty segments
can be collected and moved to a new segment. This process, which is called cleaning,
makes the old segments available for reuse. By combining cleaning with reclustering,
we can get well clustered segments.

A segment can be in one of three states. A segment starts in a clean state, i.e., it
contains no data. The segment currently being written to, is called the current segment.
When the segment is full, we start writing into a new segment. The new segment now
goes from the clean state, to current. The previous segment is now dirty, it contains valid
data (note that dirty in this context has nothing to do with main-memory state versus disk
state, as the term is most frequently used). Information about the status of the segments
is kept in the segment status table (SST), which is kept in main memory during normal
operation.

At regular times, a checkpoint operation is performed. In the checkpoint operation,
we write enough information to the log to make the current position in the log a consistent
starting point for recovery. The checkpoint information is stored in checkpoint blocks,
which are stored in fixed positions in the log.

Each new version of an object is written to a new place, making the use of logical
object identifiers (OIDs) necessary. When using logical OIDs, an OID index (OIDX)
is needed to do the mapping from logical OID to physical location when retrieving
an object. The index entries in the OIDX, the object descriptors (OD), contains the
physical address for an object and the commit timestamp. Note, however, that the ODs
that are written together with the objects to the log contain transaction identifiers (TIDs),
and the mapping from TID to commit time is written to the log as part of the commit
operation. The ODs in the OIDX from committed transactions however, contains commit
timestamps.

In a non-temporal ODB with in-place updating of objects, the OIDX needs only to
be updated when objects are created, not when they are updated. In a log-only ODB,
however, the OIDX needs to be updated on every object update. This might seem bad,
and can indeed make it difficult to realize an efficient non-temporal ODB based on this
technique. However, in the case of a temporal ODB, the OIDX needs to be updated on
every object update also if using in-place updating, because either 1) the previous or 2)
the new version must be written to a new place. Thus, when supporting temporal data



Object and Log Management in Temporal Log-Only Object Database Systems 213

management, the indexing cost is the same in these two approaches. We have in previous
work developed several techniques that can be used to reduce the OIDX access cost.

3.2 Objects

In our approach, all objects smaller than a certain threshold are written as one contiguous
object. Objects larger than this threshold are segmented into subobjects, and a subobject
index (which also takes care of versioning of a large object) is maintained for each of
these large objects (this is done transparently for the user/application). The value of
the threshold can be set independently for different object classes. This is very useful,
because different object classes can have different object retrieval characteristics.

Every object version in Vagabond has an associated object descriptor (OD), which
contains the OID, physical location, commit timestamp (when the OD is not in the
OIDX, the end timestamp of an object version is also included in the OD to reduce the
cost of certain operations), and other administrative information. The entries in the leaf
nodes of the subobject indexes are subobject descriptors (SODs). The SODs are also
stored together with the subobject in the segments. The contents of an SOD include
OID, physical location and write timestamp. While the timestamp in the OD denotes the
commit timestamp of the actual object version, the write timestamp in the SOD is the
time when the subobject was first written to a segment. This time is in general before the
commit time of the actual transaction. When a subobject is moved because of cleaning,
the write timestamp remains the same. The purpose of this, is to reduce the complexity
of the cleaning.

It is also possible to write delta objects instead of the whole objects, in order to
reduce the amount of data that has to be written to the log (note that unlike traditional
systems, that only use delta objects to reduce the log writing, a delta object in a log-only
database system can be an object version on its own, i.e., the complete version will not
necessarily be written). More details about delta objects can be found in [6].

3.3 OID Indexing

In a traditional ODB, the OIDX is usually realized as a hash file or a B+-tree, with ODs
as entries, and using the OID as the key. In a TODB, we have more than one version
of some of the objects, and we need to be able to access current as well as old versions
efficiently. Our approach to indexing is to have one index structure, containing all ODs,
current as well as previous versions. For this purpose, either a traditional multiversion
access methods like the TSB-tree can be used, or the Vagabond temporal OID index
which is optimized for OID indexing in TODBs [5].

In a temporal ODB, the OIDX has to be updated every time an object is updated.
This is a potential bottleneck. In order to reduce the index update and lookup costs
in temporal ODBs, the persistent cache (PCache) approach can be used. The PCache
contains a subset of the entries in the OIDX. The goal is to have the most frequently used
ODs in the PCache. In contrast to the main-memory cache (the OD cache), the PCache
is persistent, so that we do not have to write its entries back to the OIDX tree during
each checkpoint interval. This is actually the main purpose of the PCache: to provide an



214 K. Nørvåg

Fig. 1. Overview of the TIDX, PCache, and index-related main-memory buffers

intermediate storage area for persistent data, in this case, the ODs. The result should be
a reduced update and lookup cost for ODs.

The size of the PCache is in general larger than the size of the main memory, but
smaller than the size of the OIDX tree. The contents of the PCache are maintained
according to an LRU like mechanism. The result should give higher locality on accesses
to the PCache nodes, reducing the total number of installation reads. The average OIDX
lookup cost will therefore also be less than without using a PCache.

To avoid confusion, we will hereafter denote the OID index tree itself as the TIDX,
and use OIDX to denote the combined index system, i.e., the PCache and the TIDX.
Thus, when we say an entry is in the OIDX, it can be in the PCache, in the TIDX, or in
both. This is illustrated in Fig. 1. A more detailed description and performance analysis
of the PCache can be found in [2].

4 Log-Only Database Operations

In this section we present the algorithms for the most important operations in Vagabond.
We will start with an overview and an introductory example of log writing, and continue
with more detailed descriptions of the different operations in the rest of the section.
The description in this section is based on using magnetic disk as secondary storage.
However, except for the device which stores the checkpoint blocks (see Sect. 3.1), other
storage technologies can also be used.

Due to space constraints, the algorithms for vacuuming and cleaning are not described
in this paper. For a detailed description of these, we refer to [6].

4.1 Introduction

When a transaction is started, it is assigned a transaction identifier (TID). Unlike many
other systems, it is not necessary to write any transaction start information to the log. In



Object and Log Management in Temporal Log-Only Object Database Systems 215

fact, if a transaction is aborted before it writes any objects to the log, there will be no
trace left of the aborted transaction’s existence at all.

An object that is written to the log, is always written together with its OD. Writing to
the log is always done by writing large segments, which in general include objects from
many transactions. The buffer system employs a steal strategy, so that modified objects
can be written to the log before a transaction commits. This reduces commit time, as
well as making it possible to handle large amounts of data in one transaction.

When objects are written to the log before the transaction has committed, we do not
know the commit timestamp. Therefore, ODs written to the log contains the TID instead
of the timestamp. To be able to know if an OD contains a TID or a timestamp, TIDs
always have the most significant bit set. The ODs written together with the objects in the
log are only intended to be used if crash recovery is needed. In order to be able to know
the timestamp of a committed transaction when doing recovery, a (TID,timestamp)
tuple for the committing transaction is written to the log as a part of the commit.

After a transaction commits, the objects that have been created or updated by the
committing transaction become current versions. When another transaction later wants
to read any of these objects, it have to first retrieve the OD of the object. This OD is either
still in the OD cache, or has been installed into the OIDX. During normal operation, ODs
are not discarded from main memory before they have been installed into the OIDX.
ODs from a committed transaction are lazily installed into the OIDX after the commit
has been finished. When the ODs are inserted into the OIDX, the timestamp is used in
the OD, and not the TID.

Most transactions have a short duration, and will be short enough to make it possible
to write all its created ODs, and do the completion of the commit operation, during one
checkpoint interval (between two consecutive checkpoints). In this way, all its ODs are
guaranteed to be installed into the OIDX during the next checkpoint interval. This means
that during recovery, we know that we only have to process log back to the penultimate
checkpoint.

If a transaction lasts longer than one checkpoint interval, we allow ODs generated
by this transaction to be inserted into the PCache, even if the transaction has not yet
committed. These ODs are stored as uncommitted ODs in the PCache nodes, and can not
be used by any other transaction. In this way, when the transaction commits, all its ODs
are guaranteed to be installed into the OIDX during next checkpoint interval. Some of
its ODs in the PCache will at this point still be marked uncommitted, but during crash
recovery we know which committed transactions have dirty entries in the PCache, so that
these can be handled properly. Entries from aborted transactions will be lazily removed
from the PCache nodes as they are retrieved from disk. Objects in the log from aborted
transactions will simply be discarded the next time the segments are cleaned.

Crash recovery is simple in a log-only database system. If crash recovery is needed,
the last part of the log is scanned. All ODs generated from a transaction that commits
during one checkpoint interval, should be installed into the OIDX when the next check-
point interval ends, so that an upper bound exists for the amount of log that has to be
processed in the case of crash recovery. ODs from committed transactions that are not
yet installed into the OIDX are collected, and can later be installed into the OIDX. ODs
from aborted transactions and transactions that were ongoing at crash time, are ignored.



216 K. Nørvåg

Example. We will now illustrate log writing with the use of Fig. 2, which shows a
number of transactions. On the top, we have the time-line, running from left to right,
with checkpoints marked. The inserts of ODs into the OIDX is illustrated with arrows
in the figure. Please note that 1) the length of a checkpoint interval depends on the
workload, 2) the commit operation in the physical log is composed of suboperations
(i.e., prepare, commit, and commit completed), and 3) even though the transactions are
illustrated with separate lines, objects and ODs from different transactions can be stored
in the same segments.

Starting with transaction T8, this is an ordinary short transaction. The transaction
commits during the second checkpoint interval, and the ODs generated from this trans-
action are guaranteed to be installed into the OIDX when checkpoint 4 ends. In the case
of a crash after checkpoint 4, no ODs from transaction T8 will exist in the part of the
log that have to be processed during recovery.

Transaction T7 spans more than one checkpoint interval, and is therefore treated as a
long transaction. All the ODs written by transaction T7 during the first checkpoint inter-
val, before checkpoint 2, must be installed into the PCache before the end of checkpoint
3. This will be done in the background during the second checkpoint interval. After the
transaction have committed, its ODs can be inserted into the TIDX as well. To empha-
size: Before transaction T7 commits, its ODs can only be inserted into the PCache, but
after the transaction has committed, its ODs can be inserted into the TIDX as well as the
PCache.

� �� � �� � �� � �� � �� � 	 
 �

� � �  �
� � � � � � � � � � �

 �� � � �
 �

� � �
 �

	 �
� � �� �


 
 	
��

�
� � �

� � �

�
�

�
� �

�

�
�

�
 

�
�

k-

Fig. 2. Example of log writing

Similar to the case of transaction T7, some of the ODs from transaction T5 written
during the first checkpoint interval might have been inserted into the PCache before it
aborts. If this was the case, they will be removed from the PCache in a lazy way, as time
goes by. ODs (and objects) written to the log will be removed later, during the segment
cleaning process.

Transaction T9 commits during the third checkpoint interval, and its ODs might be
inserted into the OIDX during the same interval, but this is not guaranteed to be finished
until checkpoint 5 finishes, i.e., the second checkpoint after its commit.



Object and Log Management in Temporal Log-Only Object Database Systems 217

We have now given a short introduction to the log generation, and we will now
continue with a more detailed description of the operations.

4.2 Object Operations

A new OD is created every time an object is created, updated or deleted. In the case of
an object create or update, the OD is written together with the object to the log, in the
case of an object delete, it will be written to the log at a convenient time. In all cases,
they will be written to the log before the transaction can finish the commit operation.
The ODs will be inserted into the OIDX if the transaction commits. An OD will never
be inserted into the TIDX itself before the actual transaction commits, but in the case
of large transactions, some of the ODs can be inserted into the PCache (this will be
described in more detail later in this section). Modified OIDX nodes will in general be
written at a later time, so that the response time for a transaction commit can be short.

The following description of the operations is mainly independent of which concur-
rency control strategy is used. This means that we assume that in addition to performing
the actions described below, concurrency control aspects are maintained. For example,
if two-phase locking is used, we expect that the necessary lock(s) have been acquired
before the actual operation is carried out.

OD Management. Most transactions are short and update only a few objects. The ODs
they have generated are usually not discarded from main memory until they have been
installed into the OIDX. The ODs written together with the objects in the log will only be
used if crash recovery is needed. All ODs resulting from a transaction committed during
one checkpoint interval, should be installed into the OIDX before the next checkpoint
interval ends.

In the case of long1 transactions, the number of ODs can be very high. If we require
all ODs to be resident in the OD cache until they are inserted into the OIDX, the maximal
size of a transaction would in this case be restricted by the size of the OD Cache. Another
problem is transactions that last longer than a certain number of checkpoint intervals.
All of the log created from the time when this transaction started to write to the log has
to be processed during crash recovery. This can take a lot of time and it makes cleaning
more complex, which in many situations is not acceptable.

The problem with long transactions is solved by allowing ODs from uncommitted
transactions to be inserted into the PCache (the reason for doing this, and other alterna-
tives, are discussed in [6]). The extra cost is only marginal because PCache nodes are
frequently read and written, and because most transactions commit, the PCache space
wasted by this approach is low.

We do not allow ODs from uncommitted transactions to migrate further from the
PCache to the TIDX. The reason for this, is that this would complicate commit process-
ing, recovery and it would also be costly. Also, it should not be necessary. In the case of
very long transactions, the size of the PCache can be adaptively resized, so that its size
does not limit the transaction size.

1 When we here study long transactions, we mean both traditional long-living transactions, as
well as “large transactions” (transactions that generate large amounts of data).



218 K. Nørvåg

Management of ODs from Uncommitted Transactions. In order to avoid other trans-
actions accessing ODs from the uncommitted transactions, and because ODs from un-
committed transactions contain TIDs instead of timestamps, we need to know which ODs
in the PCache nodes are ODs from committed transactions, and which ODs are from
uncommitted transactions. This is achieved by using two binary trees inside the PCache
nodes. One tree, the committed tree, is used for the ODs of committed transactions, and
another tree, the uncommitted tree, is used for ODs from uncommitted transactions.

When a transaction commits, the ODs it generated, and which have been inserted
into PCache nodes, should be moved from the uncommitted trees to the committed trees.
This is done lazily. Every time a PCache node is retrieved, all ODs from committed
transactions that are still in the uncommitted tree are moved to the committed tree.
When an ODs is moved, the TID in the OD is replaced with the commit timestamp of
the transaction that generated the OD.

We have to keep the TID of a committed transaction until all ODs stored in the
PCache before it committed, have been moved to committed trees. For each committed
transaction, we maintain a counter of how many ODs it still has in uncommitted trees
in the PCache, and every time we move an OD from an uncommitted tree to a com-
mitted tree, we decrement this counter. When the counter reaches zero, we can discard
information on this transaction.

The(TID,timestamp,counter) tuples are stored in a TID/timestamp/counter
table (TTCT). The TTCT is written to the log during each checkpoint interval, in order
to make it possible to reconstruct the table during recovery. Most transactions will be
small, and ODs from these transactions will not be written to the PCache. Therefore, the
size of this table will be relatively small.

Creating and Updating Objects. When we create an object, it is allocated a unique
OID, and an OD is created. A new OD is also created every time we update an object.
The OD of the new version will eventually make its way into the OIDX if the transaction
commits, as described previously. There is little difference between temporal and non-
temporal objects in the case of create and update operations, the difference is mostly
whether the old OD is kept in the OIDX.

To ensure durability, an object has to be written to disk before its transaction commits.
This is similar to a traditional system, where we need to have the necessary information
written to the log before the transaction commits. The difference, however, is that in
Vagabond, the log is the final place for the objects.

The buffer system employs a steal strategy, which means that a modified object can be
written to disk before the transaction commits. The object and its OD is written together
with other objects and their ODs, possibly from other transactions, into a segment. We do
not know the timestamp of a transaction before it commits, so in the log we always use
the TID instead of the timestamp in the OD. This is also the case for ODs of uncommitted
transactions when they are inserted into the PCache.

When large objects are updated, only the modified subobjects and the affected
subobject-index nodes are written to the log. The use of the Vagabond large-object index
ensures that only the affected parts of the subobject index need to be written. Large
objects are possibly spread over several segments, and therefore the writing of large



Object and Log Management in Temporal Log-Only Object Database Systems 219

objects has to be done carefully. This is done by first writing the updated subobjects, and
then the modified parts of the subobject index. Note that the timestamps in SODs (see
Sect. 3.2) are the time of segment write, not the commit time. The reason for this, is that
in this way we do not have to update the subobject after the transaction has committed.
The timestamps in the SODs are only used during cleaning, and for that purpose, the
exact commit timestamp is not needed.

Deleting Objects. Temporal objects are not physically deleted. In this respect, they are
mostly treated as non-deleted objects. For example, during cleaning, a deleted object will
be moved to the new segment, similar to any non-deleted object. A non-temporal object,
on the other hand, can not be accessed after it has been deleted. It will be physically
removed from the segment it resides in the next time the segment is cleaned. Whether
an object is temporal or non-temporal, is stored in the object’s OD.

Deleting Temporal Objects. Deleting an object which is defined as temporal, is done by
writing a tombstone OD, which is an OD where the physical location is NULL, and the
timestamp is the delete time.

Note that whether the object is a large object or not, does not matter for the delete
operation when the object is temporal.

Deleting Non-Temporal Objects. If we do not want to keep the deleted version, i.e., it
is not a temporal object, its OD is written to the log with both physical location and
timestamp set to NULL. Unlike the tombstone OD, this OD is written to the log as
logging information to be used in the case of recovery. When the OIDX is updated
later, the OD for this object will be removed. When the object is deleted, the live-byte
counter (in the SST, see 3.1) for the segment where the object resides, is decremented
accordingly.

If the object is a large object, the subobject index has to be traversed in order to
decrease the live-byte count for the segments where the subobject-index nodes and the
subobjects are stored. The subobject-index nodes and the subobjects will be deleted next
time the respective segments are cleaned.

Deleting New Objects. If an object is deleted by the same transaction that created it, the
effect on the database should be the same as if the object had never been created. This
is assured by using the following algorithm:

1. If the object has not yet been written to the log, the only action needed is to remove
the OD from the OD cache and delete the object from the main-memory buffer.

2. If the object has been written to the log, but its OD is still in the OD cache and is
dirty with respect to the OIDX, the only action needed is to write a tombstone OD
to the log. If a crash occurs, the recovery algorithm will know that an object deleted
by the same transaction that created it, should be discarded.

3. If the object has been written to the log, and the OD in the OD cache is clean or the
OD is not resident in the OD cache, that means that the OD has been inserted into a
PCache node. In this case, the OD has to be removed from the PCache node. In order
to avoid a synchronous operation, a tombstone OD is created and inserted into the



220 K. Nørvåg

OD cache. The OD in the PCache node is removed the next time the PCache node
is brought into main memory. The tombstone OD that is inserted into the OD cache
has to be written to the log before or during commit, if the PCache node has not
been updated before that time.

Reading Objects Stored as Complete Versions. We now describe how to retrieve
current as well as historical object versions. The physical location of an object version is
stored in its OD, and in order to read an object that is not resident in memory, we have to
first retrieve its OD. If the object is a large object, the location in the OD is the location
of the root of the subobject index of the actual object version, and this subobject has to
be traversed in order to retrieve the requested subobject(s).

Current Versions. When we want to read the current version of an object, we first check
if the OD is resident in the OD buffer. If not, we have to do a lookup in the OIDX.
An OIDX lookup is done by first searching the PCache, and if the OD is not found in
the PCache, the TIDX is searched. When doing a lookup in a PCache node, it is only
necessary to search the uncommitted tree in the PCache node if it is possible that the
object has been previously modified by the same transaction that is now requesting the
object. If a locking protocol is used, this can only be the case if the transaction already
owns a write lock on this object (or in the case of hierarchical locking, a lock for a larger
granularity, for example a container).

Historical Versions. If we know the timestamp of the historical version we want to
retrieve, the lookup for the OD and retrieval of the object can be done in the same way
as when reading the current version of an object. However, quite often the query is for
an object version valid at a certain time tj . In this case, we have to retrieve the OD
with the largest timestamp less than or equal to tj . It is this operation that makes an
end timestamp in the OD beneficial when the OD is outside the TIDX (see Sect. 3.2).
If we did not have the end timestamp in the OD, it would not be sufficient to access the
OD cache or the PCache to find the OD. Even if we found an OD in the OD cache or
PCache with a timestamp ti that is close to tj , there could have been updates between
ti and tj . This would be impossible to know from the ODs alone, and we would have to
do a lookup in the TIDX for every such retrieval.

4.3 Transaction Management

In order to be able to do recovery after a failure, it is necessary to ensure that enough
information has been written to the log before a transaction commits. We have previously
described how objects can be written to disk before a transaction commits, in order to
avoid writing all the objects modified by the transaction in one burst during commit,
and how we write the ODs to the log in order to avoid synchronous updates of OIDX
nodes at commit time. We will now describe in more detail transaction management in
Vagabond.



Object and Log Management in Temporal Log-Only Object Database Systems 221

Commit. The transaction commit operation can in principle be implemented by writing
objects from the transaction that is still dirty in the object buffer to the log, followed
by a transaction finished mark which includes a (TID,timestamp) tuple. After the
objects and the transaction finished mark has been written to the log, the transaction
commit is considered finished. Objects, ODs, and the transaction finished mark can be
stored in the same segment, and more than one transaction can be committed in one
segment write (similar to traditional group commit). In this way, the response time can
be as low as the time it takes to write one segment, and this technique should in most cases
give good throughput in a single server system. However, it is difficult to implement an
efficient 2-phase commit operation by using this simple technique. 2-phase commit is
crucial in a multi-server system, and in the Vagabond approach we use a more elaborate
commit protocol, where more information is written to the log in the various phases of
the commit process [6].

Abort. In a log-only database, we do not need to undo operations when we abort a
transaction. If the transaction that wrote an object does not commit, an object written to
the log before the abort operations will simply be a dead object, which will be removed
the next time the segment is cleaned.

No ODs reflecting updates from a transaction will be installed into the TIDX until
after the commit has been done. ODs with OIDs that have been allocated by a transaction
that has aborted will never be inserted into the TIDX, and the OIDs are not reused later
by any other transaction. ODs from aborted transactions that have been inserted into the
PCache will be removed lazily at the same time as ODs from committed transactions
are moved to the committed tree (see Sect. 1).

When a transaction aborts, the live-byte counts for the segments where the objects
were written are decremented accordingly. This can only be done immediately for the
objects where ODs are still in main memory. For those objects where the ODs have
been removed from the OD cache and inserted into the PCache, the live-byte counts are
decremented when the ODs are removed from the PCache nodes.

4.4 Recovery

When the system is restarted, it is determined from the checkpoint block whether the
shutdown of the system was done controlled, or caused by a crash. If caused by a crash,
recovery is needed. We now describe how to reduce the recovery time by checkpointing,
and take a closer look at recovery and how to handle media failures.

Checkpointing. The main purpose of checkpointing is to reduce the recovery time. This
is achieved by bounding the amount of log that has to be processed at recovery time. In
a traditional database system, the main part of the checkpoint process is to write dirty
pages back to disk, usually by the use of a fuzzy checkpointing technique. In a log-only
system, this is not the important issue. The log is the final repository, and objects will
have to be written to the log before commit in any case. In Vagabond, the main issue
of checkpointing is to install the ODs into the OIDX. This is done to avoid having to



222 K. Nørvåg

read excessive amounts of log at recovery time (in order to find ODs that have not been
installed into the OIDX before the system crashed).

During a checkpoint interval, between the checkpoints, ODs from committed trans-
actions are installed into the OIDX. To keep the installation rate high enough and reduce
the amount of memory needed to store ODs not yet installed into the OIDX, all ODs
from a transaction committed during one checkpoint interval, should be installed into
the OIDX no later than the end of the next checkpoint interval.

The segment status table (SST), PCache Status Table (PCST), and the
TID/timestamp/counter tables (TTCT), are resident in main memory, and in order to
be able to recreate these after a crash, the contents of these tables are written regularly
to the log. This is done by writing a certain range of entries from these tables each time
we write a segment. During each checkpoint interval, all SST, PCST and TTCT entries
should have been written at least once.

Checkpointing can be costly, so it is important that the amount of data to be written
at checkpoint time is as low as possible, and that data structures locked as a part of the
checkpointing process are locked only for a short time. In Vagabond, most operations
can run as normal during checkpointing. The only restriction is that the timeout values
for 2-phase commit should be smaller than one checkpoint interval. The checkpoint
algorithm is as follows:

1. Wait until the number of written objects since last checkpoint, or the number of
segments written since last checkpoint, reaches a certain threshold.

2. If there are ODs created before the last checkpoint that are not yet installed into the
OIDX, stop all other log processing until this has been done. Note that this delay is
undesirable, and can normally be avoided by giving high enough priority to OIDX
updating. To reduce a possibly long checkpointing time when this situation occurs,
it is possible to solve the problem temporarily (or rather postpone the problem)
by simply writing to the log the dirty ODs that have not been written since last
checkpoint.

3. If there are entries in the SST, PCST, or TTCT, that have not been written during
this checkpoint interval, write them to the log now.

4. Update the least recently written checkpoint block. Now the checkpointing is fin-
ished, and normal operation continues.

Crash Recovery. The purpose of crash recovery is to reconstruct a consistent state. In
a traditional system, this is a very complex operation, and typically involves an analysis
phase, a redo phase, and an undo phase. In a no-overwrite system like Vagabond, undo or
redo of objects is not necessary. However, ODs and transaction management information
is written to the log, and this information has to be read in order to rebuild the resident
structures.

The first step in a recovery is to identify the last segment that was successfully
written before the crash. This is done by reading the log from the last checkpoint until
1) we come to a segment that was only partially written (the system crashed when it was
writing this segment), or 2) the next segment of a segment does not exist (the address of
the next segment is determined before a segment is written so that it can be stored in the



Object and Log Management in Temporal Log-Only Object Database Systems 223

currently written segment, in this way, if the next segment does not exist we know that
the system crashed in the interval between writing two segments).

When we read the log in order to find the end of it, we also collect all ODs, and keep
each OD where we later find a commit operation for the transaction that generated that
OD. For ODs that we do not find a commit, these ODs can be safely discarded because
the system crashed before the transaction was committed.

After we have identified the end of the log, and processed the part of the log written
after the last checkpoint, we read the log from the last checkpoint and backwards until the
penultimate checkpoint. In this way, we process all segments that might have ODs from
committed operation that have not yet been installed into the OIDX. This backward
reading can be done efficiently, because all segments have a pointer to the previous
segment. In addition, all segments also contains the number of ODs in the previous
segment in the log. This makes it possible to only read the part of the segment that
contains the ODs, the rest of the segment can be skipped.

While reading the segments, we rebuild the relevant structures in memory. If we need
to write index nodes during recovery because of insufficient buffer capacity, this is done
to clean segments. When the log has been processed, we do a checkpoint, and when
the checkpoint process is finished, the checkpoint blocks are updated. Idempotence is
guaranteed because we do not modify any written data before updating the checkpoint
block. If a system crashes during recovery, it will simply start recovery in the same way
next time.

Media failure in a log-only system can be handled by the use of mirroring (RAID 1)
or RAID with parity blocks (for example RAID 4 or RAID 5). The use of mirroring
will also improve read performance, because the read bandwidth is doubled. The write
performance will stay the same.

5 Conclusions and Further Work

The log-only approach for TODBs has been shown to be promising with respect to
performance [3]. However, although the log-only approach in its basic form is relatively
straightforward, achieving performance and high concurrency is not straightforward. In
this paper, we have described in detail how this can be achieved, resulting in a design that
avoids some of the problems in previous, related designs. The results include support
for steal/no-force buffer management, fuzzy checkpointing and fast commit.

The results from this paper together with our other work in this context, has shown
that the log-only approach is feasible. Some ideas that we would like to explore further
are the realization of a valid time or bitemporal TODBs using the log-only approach. We
also plan to adapt the ideas to temporal object-relational database system, which could
make the results even more interesting.



224 K. Nørvåg

References

1. J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and I. Traiger. The
recovery manager of the System R database manager. ACM Computing Surveys, 13(2), 1981.

2. K. Nørvåg. The Persistent Cache: Improving OID indexing in temporal object-oriented data-
base systems. In Proceedings of the 25th VLDB Conference, 1999.

3. K. Nørvåg. A comparative study of log-only and in-place update based temporal object database
systems. In Proceedings of the Ninth International Conference on Information and Knowledge
Management (CIKM’2000), 2000.

4. K. Nørvåg. Design issues in transaction-time temporal object database systems. In Proceedings
of ADBIS-DASFAA’2000, 2000.

5. K. Nørvåg. TheVagabond temporal OID index:An index structure for OID indexing in temporal
object database systems. In Proceedings of the 2000 International Database Engineering and
Applications Symposium (IDEAS), 2000.

6. K. Nørvåg. Vagabond: The Design and Analysis of a Temporal Object Database Management
System. PhD thesis, Norwegian University of Science and Technology, 2000.

7. M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file
system. In Proceedings of the Thirteenth ACM Symposium on Operating System Principles,
1991.

8. V. Singhal, S. Kakkad, and P. Wilson. Texas: An efficient, portable persistent store. In Pro-
ceedings of the Fifth International Workshop on Persistent Object Systems, 1992.

9. M. Stonebraker. The design of the POSTGRES storage system. In Proceedings of the 13th
VLDB Conference, 1987.



Operations for Conceptual Schema
Manipulation: Definitions and Semantics

Helle L. Christensen, Mads L. Haslund, Henrik N. Nielsen, and
Nectaria Tryfona

Department of Computer Science, Aalborg University
Fredrik Bajersvej 7E, 9220 Aalborg Øst, DENMARK

{arnaq,levi,moth,tryfona}@cs.auc.dk

Abstract. This paper concerns the issue of conceptual schema integra-
tion and manipulation, i.e., the process of manipulating highly abstract,
semantically rich database schemas for the extraction of meaningful and
unambiguous results. We propose the use of six fundamental manipu-
lation operations, namely rename, select, project, union, set difference,
and intersection. We give their definition and semantics using the Entity-
Relationship modeling notation. We argue that in order to preserve the
semantics of the ER-schemas before and after the operations are per-
formed, these schemas need to be translated to mathematical formu-
lations; then the manipulation operations can be applied. We use the
ALCQI description logic notation which features a rich combination
of constructors, powerful enough to express elements of ER-schemas.
We show that the resulting knowledge bases, which encapsulate all the
knowledge about the ER-schemas, need further structuring to accom-
modate the semantics of the ER elements. Examples demonstrate the
applicability and efficiency of the proposed approach.

1 Introduction

The need for integration and further manipulation in the area of databases and
data warehouses has been well-documented in literature [9], [11], [12]. The pro-
cess of integration relates mostly to source integration (i.e., when the sources are
merged), schema integration (i.e., when conceptual and/or logical schemas are
integrated), data integration (i.e., the process of comparing source data sets and
creating a reconciled view), and information integration (i.e., when metadata
or views are merged), while the process of manipulation includes issues such
as pre-integration, schema comparison, schema union, schema intersection, and
schema restructuring [10].

In this paper we deal with conceptual schema manipulation, i.e., the process
of manipulating highly abstract, semantically rich schemas with set operations
and operations comparable to the ones from relational algebra, for the extraction
of meaningful results. These schemas may represent either different applications
of the same domain, e.g., a patient and a drug trial schema for the corresponding
databases of a pharmaceutical company, or just different excerpts of the same
database.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 225–238, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



226 H.L. Christensen et al.

The motivation behind this research effort is based on the argument that
in order to build applications out of existing ones we need to raise the level of
abstraction of operations on schemas, models and mappings [1]. Our goal is a
methodology that supports conceptual schema manipulation in an unambiguous
manner.

More specifically, in this work, having the Entity-Relationship (ER) as the
pilot conceptual model, we introduce the semantics and usage of six schema
manipulation operations, namely rename, select, project, union, set difference,
and intersection, for the manipulation of ER-schemas. The semantic definition
of these operations is not enough to ensure their unmistakable application on
conceptual schemas. A mathematically sound formulation, which captures the
semantics of both the ER-schemas to be manipulated and the applied opera-
tions in a formal way, is needed. For this, we use Description Logic (DL) for
the unambiguous representation of ER-schemas, as it is particularly well-suited
for specifying data classes and relationships among classes and equipped with
both formal semantics and inference engines [5]. The DL we use, called ALCQI,
for the representation of the ER-schemas, features a rich combination of con-
structors powerful enough to express elements of ER-schemas. The expressions
of ALCQI form Knowledge Bases (KB) about classes and relations, which en-
sure the preservation of the semantics for both ER-schemas and the applied
operations.

The rest of the paper is organized as follows. Section 2 describes representa-
tive related work on the issues of schema integration and manipulation as well
as the use of DL in this area. Section 3 gives the semantics of the schema manip-
ulation operations and shows their use on ER-schemas. Section 4 describes the
way DL is used to preserve the semantics of the ER-schemas to be manipulated.
The presented approach has been tested by manipulating the Data Management
(DM) and the International Product Safety (IPS) database schemas of the
Danish pharmaceutical company Novo Nordisk A/S; examples from this area
demonstrate the applicability of our proposal. Section 5 concludes and draws
future research directions.

2 Related Work

The approaches that have been developed in the area of integration differ with
respect to the merging of elements of the used models. Moreover, the use of
DL, to ensure preservation of semantics during manipulation, has been broadly
adopted in the area of integration.

According to [2] three types of description logic assertions can be used to de-
termine relations between elements. Elements can only be merged if they fulfill
the requirements set by the user, e.g., elements must be 85% equal to be merged.
This process of creating a global view over a database might create conflicts e.g.,
homonym conflicts where entities have the same name but are interpreted differ-
ently. In [4] a solution on how data integration conflicts can be resolved through
suitable matching, reconciliation, and conversion operations is explained. The so-



Operations for Conceptual Schema Manipulation: Definitions and Semantics 227

lution is based on a conceptual representation of the application domain which
helps in the integration and reconciliation process.

The research areas of integration and manipulation are explored in different
directions. According to [3] two main approaches for integration exist: the pro-
cedural and the declarative. In the procedural approach data is integrated in an
ad-hoc manner with respect to some predefined requirements. Several projects
follow this approach, such as the TSIMMIS, Squirrel, and WHIPS, which all are
explained briefly in [10]. The declarative approach on the other hand works to-
wards modeling data in a suitable language to construct a unified representation.
There are also tools that supports this approach, such as the Carnot, SIMS, and
Information Manifold which are also explained briefly in [10]. Another way to
facilitate the process of integration is presented in [8] which describes a graph-
ical tool called i•com. This tool facilitates the process of conceptual modeling,
integration of databases, and uses a description logic inference engine to check
possible consistencies of the created schemas.

Our work presents a methodology to manipulate ER-schemas in an unam-
biguous way with the help of DL. We do not aim towards the implementation
of a graphical tool, like i•com; we rather envision a mechanism which can be
included on top of an already implemented system.

3 The Schema Manipulation Operations

In order to efficiently manipulate ER-schemas, we introduce the use and se-
mantics of six fundamental operations. These operations, namely rename, se-
lect, project, union, set difference, and intersection, were chosen having as basis
the fundamental operations from the relational algebra. They are constructed
based on a set of guidelines that specifies choices made about integration of
ER-schemas, for example, rules for merging schema elements, i.e., entities, rela-
tionships, attributes. (We chose to use the terms entity, and relationship, instead
of entities, and relationships, respectively).

The merging of schema elements during the manipulation process is based on
the concepts of entity-equivalence, attribute-equality, and relationship-equality.
More specifically, we allow the merging of two entities from two ER-schemas if
they have the same name or if the user specifies them to be the same (entity-
equivalence); we allow the merging of two attributes if they belong to the same
entity and have the same names (attribute-equality). Two relationships are equal
(relationship-equality) if they relate the same entities with the same cardinalities.

Additionally, we make the assumptions that the ER-schemas to be integrated
and manipulated are logically connected, i.e., belong to the same domain and
concern the same topics, e.g., sales, production, or patients. There exist cases
which are difficult to address, such as synonym cases, e.g., entities may have syn-
onym names and only some of their attributes are the same. We handle them by
allowing the user to specify equivalent entities and ISA-relationships between en-
tities in different ER-schemas. The notation used to specify equivalence between
entities is Entity1(S1) =SPE Entity2(S2), which denotes that Entity1 from the



228 H.L. Christensen et al.

ER-schema S1 is specified to be the same as Entity2 from the ER-schema S2.
The notation used to specify a ISA-relationships between entities in different
ER-schemas is Entity1(S1) �S Entity2(S2), which denotes that Entity1 from
the ER-schema S1 is a specialization of Entity2 from the ER-schema S2.

3.1 An Application Example

We tested the applicability of our approach in excerpts of two ER-schemas used
in the pharmaceutical company Novo Nordisk A/S. The two schemas correspond
to the Data Management (DM) database which keeps track (among others)
of products, trials, patients, and events, and the International Product Safety
(IPS) database which records serious events. The products are tested in trials
involving test persons, which are referred to either as patients or as subjects.
During a trial a patient can suffer adverse events. An event can be e.g., a slight
bruise, an allergic reaction, or death. A subset of these events is serious adverse
events. A serious adverse event can be e.g., anaphylactic shock or death. The
IPS ER-schema regards data about the adverse serious events while the DM
ER-schema regards data about all events. Figures 1 and 2 illustrate excerpts of
the two schemas.

logshas
0:n1:1 1:1 0:n

0:n

1:1

Product

prod_name create_time
id

Master

gender
name

id Patient

seriousness
date
event_id

Relationship :

Attribute list :

Cardinality :

Legend

Entity :

0:n

SA-Event

is-in

Fig. 1. The IPS ER-schema

It is obvious that the two database schemas have many common values in
basic elements (e.g., patients, drugs, etc.) and the need for their integration is
apparent. As described previously, the user can specify equivalent entities and
ISA-relationships in the two ER-schemas. The following shows the specifications
of equivalent entities and ISA-relationships for the two ER-schemas:

– Master(IPS) =SPE Trial(DM), Patient(IPS) =SPE Subject(DM)
– SA-Event(IPS) �S Event(DM)

3.2 The Semantics of the Six Schema Manipulation Operations

The schema manipulation operations operate on a universe of discourse, which
we define to be the set Ω that consists of all ER-schemas. We further define the



Operations for Conceptual Schema Manipulation: Definitions and Semantics 229

0:n

1:1

measurerecords

has
1:1 0:n 1:1 1:n

0:n 1:1 1:1 1:1

receive

Trial Subject

VisitEvent

id

event_id
date

create_time

id
name
gender

date
verify_id

visit_code
status

Outcome

Product

prod_name

is-in

Fig. 2. The DM ER-schema

set P, that consists of all predicates P . With these definitions, it is possible to
define the domain and range of the schema manipulation operations. The domain
and range for the six operations is summarized in Table 1a. A description of the
semantics of the six operations follows.

The Rename Operation. The rename operation receives an ER-schema and
a predicate as input and returns a new ER-schema; the predicate is a comma
separated list containing tuples, where each tuple contains the current name
(fromName) of the entity and its new unique name (toName). The new ER-
schema contains all the entities which were in the original ER-schema. The
entities which were specified to be renamed, are renamed according to the used
predicates. The semantics of the rename operation are summarized in Table 1b.
An example of the rename operation is that of renaming the entity Subject

Table 1. (a) Domain and range for the operations. (b) The rename operation

Operation Domain & Range RenameP (S1) → S2

1. Copy S1 to S2

2. For each tuple in predicate P do:
a) Replace all occurrences of

fromName in S2 with toName.

rename Ω × P → Ω
select Ω × P → Ω

project Ω × P → Ω
union Ω × Ω → Ω

set difference Ω × Ω → Ω
intersection Ω × Ω → Ω

(a) (b)

in the DM ER-schema, which according to the specification in Sect. 3.1 can
be renamed to Patient. The syntax for the example, where entities in the DM
ER-schema are renamed, is: rename((Subject,Patient))(DM).



230 H.L. Christensen et al.

The Select Operation. The select operation receives an ER-schema and a
predicate as input and returns a new ER-schema; the predicate consists of a list
of names, specifying the entities to be selected. The resulting ER-schema consists
of the entities specified in the predicate and any entities related to the entities
specified in the predicate. The semantics of the operation are summarized in
Table 2a. An example of its use is illustrated in Fig. 3a.

The Project Operation. The project operation receives an ER-schema as
input and returns a new ER-schema that consists of the entities specified in
the predicate and the relationships relating these entities. The semantics of the
project operation are summarized in Table 2b. An example of the use of the
project operation applied to the ER-schema of Fig. 1 is illustrated in Fig. 3b.

Table 2. (a) The select operation. (b) The project operation

SelectP (S1) → S2

1. For each tuple in predicate P do:
a) Copy the entity along with all

entities related to the entity
from S1 to S2 (ignore entities
already in S2).

ProjectP (S1) → S2

1. Copy all entities specified in the
predicate P from S1 to S2.

2. Copy all relationships in S1 which
in S2 are related to two or more en-
tities.

(a) (b)

Trial

is-in

Subject gender
name
id

create_time
id

has
1:1 0:n

Product

prod_name 1:1

1:n

logs
1:1 0:n

id

Master

create_time

event_id
date
seriousness

SA-Event

(a) (b)

Fig. 3. (a) selectTrial(DM). (b) projectMaster,SA−Event(IPS)

The Union Operation. The union operation receives two ER-schemas as in-
put and returns a new ER-schema containing the two original schemas merged
together. Equivalent entities are merged into one entity with a union of the



Operations for Conceptual Schema Manipulation: Definitions and Semantics 231

attributes of the original entities. It is common, when unifying schemas, to
have two entities, one in each schema, which are semantically related by the
ISA-relationship. Users can specify ISA-relationships between entities in the
two schemas as mentioned in Sect. 3.1. This information is further stored in
a list. This list, called the ISA-list, contains ISA-tuples, each specifying an
ISA-relationship between entities from two ER-schemas. When two ER-schemas,
that have an ISA-relationship specified between entities, are merged, a new re-
lationship is added. This new relationship connects the two entities, from the
ISA-relationship, in the new ER-schema. The semantics of the union operation
are summarized in Table 3a and an example of use of the union operation can be
seen in Fig. 4. The relationship isa∗ represents the relationship which is added

has

isa*

0:n

1:1

measurerecords

1:1 0:n 1:1 1:n

0:n 1:1 1:1 1:1

logs

0:n

1:1

Trial

create_time
id

id
name
gender

date
verify_id status

visit_code

Event

Subject

Visit Outcome

receive

event_id
date

Product

prod_name

SA-Event

event_id
date

1:1

0:n

is-in

0:1 1:1

seriousness

has*

Fig. 4. union(DM, IPS)

in item 7a of the semantics of Table 3a, while the relationship has∗ represents the
has relationship from the IPS schema, which has been renamed to be unique.

The Set Difference Operation. The set difference operation receives two
ER-schemas as input and returns a new ER-schema consisting of all the entities
in the ER-schema S1 minus the entities that exist in the ER-schema S2. This
implies that the operation simply removes the intersection of entities between the
two ER-schemas from the first ER-schema. The semantics of the set difference
operation are summarized in Table 3b and an example of the set difference
operation can be seen in Fig. 5a. Note that the set difference operation is not
commutative.

The Intersection Operation. The intersection operation receives two ER-
schemas as input, and returns a new ER-schema consisting of the entities and
relationships which exist in both of the original ER-schemas. The semantics of
the intersection operation are summarized in Table 3c and an example of use
of the intersection operation can be seen in Fig. 5b. Note that the intersection



232 H.L. Christensen et al.

operation takes the union of attributes of each common entity and adds then to
the entity appearing in the new ER-schema.

has

Product

gender
name
id

create_time
id

1:1 0:n
Master Patientis-in

0:n

1:1

prod_name

Visit

measure

Outcome visit_code
status

date
event_id

records
1:10:n

1:1

1:1

date
verify_id

Event

(a) (b)

Fig. 5. (a) set difference(DM, IPS). (b) intersection(IPS, DM)

Table 3. (a) The union operation. (b) The set difference operation. (c) The intersection
operation

Union (S1, S2) → S3

1. Copy S1 to S3
2. Copy S2 to S4
3. Find all relationships in S3 and S4

that have the same name, but are
not equal.
a) Change the names of

relationships found in S4, so
they are unique in both S3

and S4.
4. Find all entities from S3 and S4

that are equivalent.
a) Add unique attributes from

entities in S4 to entities in S3.
5. Add unique entities from S4 to S3.
6. Add unique relationships from S4

to S3.
7. For each tuple in the ISA-list do:

a) Add a new relationship to S3.

Set Difference (S1, S2) → S3

1. Copy S1 to S3

2. Remove all entities from S3 which
have equivalent entities in S2.

3. Remove all relationships which be-
long to zero or one entities, along
with any references to these rela-
tionships, from S3.

(b)
Intersection (S1, S2) → S3

1. Find all equivalent entities in S1

and S2

a) Add union of the two entities to
S3.

2. Add all equal relationships from S1

and S2 to S3.

(a) (c)

4 Description Logic and the Manipulation Operations

In order to ensure that the application of the manipulation operations to schemas
returns unambiguous results, we need to define the ER-schemas in a clear, formal
way, with unique interpretations. For this, we adopt the use of the description



Operations for Conceptual Schema Manipulation: Definitions and Semantics 233

logic ALCQI and the translation of ER-schemas to KBes, which is described in
[5], although the notation is inspired by [7]. The reason for choosing ALCQI is
that it provides a broad formal framework, which is useful for the preservation
of semantics and the expression of the ER-schemas elements. We first give a
brief introduction to ALCQI (Sect. 4.1) and then describe the mapping and
translation of ER-schemas to ALCQI KBes (Sect. 4.2 and 4.3). For further
preservation of semantics, the KBes need to be structured to accommodate the
elements of the ER-schemas (Sect. 4.4).

4.1 The Description Logic ALCQI
The basic types of ALCQI are concepts and roles. Concepts and roles belong
to a domain Δ, which consists of a set of instances. The domain Δ could e.g.,
be Citizen of Denmark, where the instances are people living in Denmark.

A concept is a subset of the domain Δ and it can be either atomic or com-
posed. Composed concepts are expressions built by applying concept construc-
tors on a set of atomic concepts. An atomic concept is a class in the domain Δ
and it can be chosen to be any of the classes in the domain, but some of the
classes in the domain are more useful as atomic concepts than others. A concept
in the domain Citizen of Denmark could be male, which consists of all male
people in the domain, whereas a composed concept could be female = ¬male.

A role is a binary relation between concepts of the domain Δ and is, like a
concept, either atomic or composed. Composed roles are expressions made by
applying role constructors to a set of atomic roles. A role in the domain Citizen
of Denmark could be parent of, which relates all parents in the domain Citizen of
Denmark with their children. A composed role could be child of = ¬ parent of,
which relates all children with their parents.

The syntax for the constructors (both concept and role constructors) is shown
in the syntax part of Table 4, where C and C ′ are concepts and R is a role.
The semantics of ALCQI are given as sets on the domain Δ. A concept C is
interpreted as a set of instances on the domain Δ, while a role is interpreted as a
set of pair of instances of the domain Δ. Formally, an interpretation I = (ΔI , ·I)
consists of a nonempty set ΔI and a function ·I that maps every concept to a
subset of ΔI , every role to a subset of ΔI×ΔI and every individual to an instance
of ΔI . The set ΔI is called the domain, while ·I is called the interpretation
function. The semantics of all the constructions are shown in the semantics part
of Table 4.

The constructors in Table 4 are used to form expressions in ALCQI. A set
of expressions in ALCQI forms a KB. A KB encapsulates knowledge about a
specific domain, expressed in terms of concepts and roles. An ALCQI KB is
constituted by a finite set of assertions. There exist two types of assertions in
ALCQI: inclusion and equality assertions. The assertions consist of atomic con-
cepts A and C, where C can be an atomic or composed concept. These assertions
represent each knowledge about the domain. The syntax of the inclusion asser-
tion is A � C, while the semantics is (A � C)I = (AI ⊆ CI). The syntax of the
equality assertion is A=̇C, while the semantics is (A =̇ C)I = (AI = CI).



234 H.L. Christensen et al.

Table 4. The syntax and semantics rules of ALCQI

Syntax Semantics

C, C’ −→ A |
¬C | (¬C)I = ΔI\CI

C � C′ | (C1 � C2)I = CI
1 ∩ CI

2

C 
 C′ | (C1 
 C2)I = CI
1 ∪ CI

2

∀R.C | (∀R.C)I = {o ∈ ΔI |∀o′. <o, o′>∈ RI → o′ ∈ CI}
∃R.C | (∃R.C)I = {o ∈ ΔI |∃o′. <o, o′>∈ RI ∧ o′ ∈ CI}

∃≥nR.C | (∃≥nR.C)I = {o ∈ ΔI |#{o′. <o, o′>∈ RI ∧ o′ ∈ CI} ≥ n}
∃≤nR.C (∃≤nR.C)I = {o ∈ ΔI |#{o′. <o, o′>∈ RI ∧ o′ ∈ CI} ≤ n}

R −→ P |
P − (P −)I = {<o, o′>∈ ΔI × ΔI | <o′, o>∈ P I}

4.2 Mapping between ER and ALCQI

The ER model cannot be mapped directly to ALCQI as it consists of other types
of basic elements than ALCQI. The ER-model consists of entities, relationships,
attributes, and ER-roles, while ALCQI consists of concepts and roles [5]. The
elements from the ER-model should be modeled as DL elements to create an
ALCQI descriptive logic knowledge base[5]. A KB is a formal representation
that encapsulates all knowledge about a given ER-schema and enables the iden-
tification of all the original elements of the ER-schema. The basic elements of
the ER model are modeled as elements of ALCQI (Table 5). The function cmins

maps an ER-role to a non-negative integer, whereas the function cmaxs maps
an ER-role to a non-negative integer in the interval from zero to infinity.

Table 5. Mapping between the ER model components and ALCQI components

Basic element
in ER-model Modeled as Notes

Entity Concept -
Attribute Role Relates an entity to the domain of the attribute.

Relationship Concept
Relationships must have unique names within
the ER-schema, due to constrains in ALCQI.

ER-role Role Relates a relationship and an entity.

Cardinality Role
Uses the functions cmins and cmaxs to model
upper and lower bounds on the role.



Operations for Conceptual Schema Manipulation: Definitions and Semantics 235

4.3 Translation from ER to ALCQI
The translation function φ translates an ER-schema into a ALCQI KB. An
ALCQI KB φ(S), representing the ER-schema S, consists of an atomic concept
φ(A) for each entity, relationship or domain symbol A in S, and an atomic role
φ(R) for each attribute symbol or ER-role R in S.

In [5] the translation from an ER-schema to an equivalent ALCQI KB is
done through five translation rules. Each rule translates a different part of the
ER-schema into description logic expressions. Only three out of the five rules
from [5] are useful in our context. These are:

1. For each entity E with attributes A1, . . . , Ah with the domains D1, . . . , Dh

respectively, insert the assertion:
φ(E) � ∀φ(A1).φ(D1)� · · ·�∀φ(Ah).φ(Dh)�∃=1φ(A1)� · · ·�∃=1φ(Ah)

2. For each relationship R of arity k between entities E1, . . . , Ek, to which R is
connected by means of ER-roles U1, . . . , Uk respectively, insert the assertions:

φ(R) � ∀φ(U1).φ(E1) � · · · � ∀φ(Uk).φ(Ek) � ∃=1φ(U1) � · · · � ∃=1φ(Uk)
φ(Ei) � ∀(φ(Ui))−.φ(R), for i ∈ {1, . . . , k}

3. For each ER-roles U associated to relationship R and entity E,
- if m = cminS(U) �= 0, then insert the assertion: φ(E) � ∃≥m(φ(U))−

- if m = cmaxS(U) �= ∞, then insert the assertion: φ(E) � ∃≤m(φ(U))−

4.4 Structuring the Knowledge Bases

Even though a KB encapsulates all knowledge about a given ER-schema and
enables the identification of all the original elements, the structure is unfit for lo-
cating specific elements. The KB is therefore further structured into a Structured
Knowledge Base (SKB). A SKB contains two lists, one that contains knowledge
about entities in the KB, called the Entity Concept list (EC-list), and another
that contains knowledge about relationships in the KB, called the Relationship
Concept list (RC-list).

The EC-list has an entry for each entity in the ER-schema. Each entry in
the EC-list consists of the name of the entity that it represents and two lists.
One list, the relationship-expression list (RE-list), contains information about
the relationships that the entity is related to and the other list, the domain-
expression list (DE-list), contains information about the attributes of the entity.

The RC-list has an entry for each relationship in the ER-schema. Each entry
in the RC-list consists of the name of the relationship that it represents and
one list. The list of the relationship entry, called the relationship-expression list,
contains information about the entities that the relationship is related to. The
SKB for an ER-schema S has the following structure:

Structured knowledge base φ(S):
EC = (EC1, EC2, ..., ECn), where ECi = (REECi , DEECi)
RC = (RC1, RC2, ..., RCm), where RCi = (RERCi)



236 H.L. Christensen et al.

A KB is structured into a SKB by dividing all the assertions in the KB into
explicit assertions. The assertions of the KB are made explicit by applying the
following transformation, which can be proven by induction:

A � C1 � · · · � Cn ⇔ (A � C1) � · · · � (A � Cn)

Each of these explicit assertions is then grouped into the SKB based on the
following three rules:

– If the concept of the constructor is represented by a domain symbol Di,
which denotes the union of all attribute domains, then the assertion belongs
to the domain-expression list of the entity specified in the assertion.

– If the role of the constructor is represented by an inverse role, then the
assertion belongs to the relationship-expression list of the entity specified in
the assertion.

– If none of the two above rules apply, then the assertion belongs to the rela-
tionship list.

An ER-schema and its equivalent KB are shown in Table 6. The ER-schema
is an excerpt of Fig. 2, with the addition of the ER-roles ht and hp. This KB
can then be structured into the SKB shown in Table 7. When an ER-schema
has been translated into an ALCQI KB, the schema manipulation operations
can be applied. Each one of the operations is realized in terms of an algorithm
that takes as input the appropriate KBes and returns a KB. With basis in the
semantics for the schema manipulation operations and the structure of the SKB,
it is a simple task to specify algorithms that implement the schema operations.
The algorithms that have been created are presented in [6].

Table 6. An excerpt of the IPS ER-schema with the addition of ER-roles and its
equivalent KB

has

0:n

1:1hp

ht

id

prod_name

Trial

Product φ(Product) � ∀φ(product name).D1 � ∃=1φ(product name) �
∀φ(hp))−.φ(Has) � ∃=1(φ(hp))−

φ(Trial) � ∀φ(id).D2 � ∃=1φ(id) � ∀(φ(ht))−.φ(Has)

φ(Has) � ∀φ(hp).φ(Product) � ∃=1φ(hp) �
∀φ(ht).φ(Trial) � ∃=1φ(ht)

5 Conclusions and Future Work

We have presented the definitions and semantics of six fundamental opera-
tions for conceptual schema manipulation, namely rename, select, project, union,



Operations for Conceptual Schema Manipulation: Definitions and Semantics 237

Table 7. The SKB for the ER-schema shown in Table 6

Entity Concept RE-list DE-list

Product (∀(φ(hp))−.φ(has)), (∀φ(product name).D1�
(∃=1(φ(hp))−)) ∃φ(product name))

Trial (∀φ(ht))=1.φ(has) (∀φ(id).D2 � ∃=1φ(id)

Relationship Concept RE-list

Has (∀φ(hp).φ(Product) � ∃=1φ(hp)),
(∀φ(ht).φ(Trial) � ∃=1φ(ht))

set difference, and intersection, as one step towards a methodology for semi-
automatic schema management. We have shown the way these operations ma-
nipulate ER-schemas. We use the ER-model as a prototype environment; we are
working towards showing that object oriented [13] and other semantic models
can be used as framework, once their elements and properties have been defined
formally.

In order to make sure that we preserve both the semantics of the operations
and the manipulated schemas, we adopt the use of ALCQI. More specifically,
we translate ER-schemas into KBes that encapsulate all their semantics and
use the KBes as input to the applications of algorithms that implement the
six operations. The output is a KB that represents a correct and unambiguous
schema.

We have applied our approach to the real environment of the pharmaceutical
databases of Novo Nordisk A/S, experiencing useful results, with no inconsis-
tencies.

We are currently working towards the implementation of a mechanism han-
dling the aforementioned proposal on top of the Designer and Repository tool
of Oracle. We are also working on allowing semantically richer the ER-schemas,
e.g., by diagrammatically allowing ISA-relationships and aggregated entities.
Furthermore, we are considering the extension of the operations towards a more
general use; for example, the rename, select, and project operations can also be
applied on relationships if accompanied by the appropriate constraints.

Acknowledgments. The authors thank Novo Nordisk A/S for supporting this
research and providing the case study environment, and Luca Aceto for his help
with DL.

References

1. Philip A. Bernstein. Panel: Is Generic Metadata Management Feasible? In Proc.
of the 26th Intl. Conference On Very Large Data Bases, pages 660–663, 2000.

2. A. Bonifati, L. Palopoli, D. Saccà, and D. Ursino. Discovering Description Logic
Assertions from Database Schemes. In Proc. of the Intl. Workshop on Description
Logics - DL-97, pages 144–148, 1997.



238 H.L. Christensen et al.

3. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Information Integration: Conceptual Modeling and Reasoning
Support. In Proc. of the 3rd IFCIS Intl. Conference on Cooperative Information
Systems, New York, USA, pages 280–291. IEEE-CS Press, August 20-22 1998.

4. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. A Principled Approach to Data Integration and Reconciliation
in Data Warehousing. In Proc. of the Intl. Workshop on Design and Management
of Data Warehouses(DMDW’99), volume 19, June 1999.

5. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Logics for Databases and
Information Systems, chapter 8, pages 229–263. Kluwer academic publishers, 1998.

6. Helle L. Christensen, Mads L. Haslund, and Henrik N. Nielsen. Operations for
Schema Integration, Definitions & Semantics. Technical report, Aalborg University,
2001.

7. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Rea-
soning in Description Logics. In Foundation of Knowledge Representation, pages
191–236. CSLI-Publications, 1996.

8. Enrico Franconi and Gary Ng. The i•com Tool for Intelligent Conceptual Mod-
elling. In 7th Intl. Workshop on Knowledge Representation meets Databases
(KRDB’00), August 2000.

9. William H. Inmon. Building the Data Warehouse. John Wiley & Sons, 2nd edition
edition, March 1996.

10. Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis. Fun-
damentals of Data Warehouses. Springer Verlag Berlin Heidelberg, 2000.

11. Peter McBrien and Alexandra Poulovassilis. A Formal Framework for ER Schema
Transformation. In Conceptual Modeling - ER ’97, 16th Intl. Conference on Con-
ceptual Modeling, Los Angeles, California, USA, November 3-5, 1997, Proc., vol-
ume 1331 of Lecture Notes in Computer Science, pages 408–421. Springer, 1997.

12. Christine Parent and Stefano Spaccapietra. Issues and Approaches of Database
Integration. CACM, 41(5):166–178, 1998.

13. James E. Rumbaugh. OMT: The Object Model. Journal of Object-Oriented Pro-
gramming, 7(9):21–27, February 1995.



Object-Oriented Database as a Dynamic System
with Implicit State

Kazem Lellahi1 and Alexandre Zamulin2�

1 LIPN, UPRESA 7030 C.N.R.S
Université de Paris 13, Institut Galilée

99, Av. J.B. Clément, 93430 Villetaneuse France
kl@lipn.univ-paris13.fr, fax +33 (0)1 4826 0712

2 A.P. Ershov Institute of Informatics Systems
Siberian Division of Russian Academy of Sciences

Novosibirsk 630090, Russia
zam@iis.nsk.su, fax: +7 3832 323494

Abstract. A formalization of object-oriented database concepts in the
context of algebraic specifications with implicit state is proposed. An ob-
ject database schema is represented as a dynamic system and an object
database instance as a state algebra. The paper also provides a formal-
ization of binding modes and a rigorous treatment of null value.

Keywords: object modeling, object-oriented database, dynamic system,
implicit state, state update.

1 Introduction

Object-oriented systems deal with collections of objects. An object has a state
and a behavior. The behavior of an object serves to access or update its state.
Objects are organized in an inheritance hierarchy. Another important aspect of
object modeling is overloading, which is the possibility of giving the same name
to several attributes or methods.

The need for formal definition of these and other pertinent object concepts is
widely recognized. Papers and books devoted to this problem include database
approaches [2,15,5,13,14], conventional algebraic approaches [2,9], and model-
based approaches [6,22]. The database approaches have resulted in the proposal
of the ODMG object model and the object definition language ODL and object
query language OQL based upon it [4,5]. However, the model is not formalized.

A formal object model FOR (Functional-Object-Relational) has been intro-
duced in [17] and further developed in [24,16]. The main characteristic of the
model is its similarity with relational model and relational algebra, that is, a
clear separation between database schema, database instance and query. How-
ever, that model does not deal with an important aspect of object databases,
namely updating methods. This paper stresses on updating aspects.
� The work of the second author is supported in part by Russian Foundation for Basic

Research under Grant 01-01-00787.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 239–252, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



240 K. Lellahi and A. Zamulin

Another interesting approach is adopted in collection types [3,8,7]. The main
idea of this approach is to enrich pure functional programming techniques with
facilities for manipulating collections of data. It does not, however, address the
problem of state transformation and does not introduce any concept of object.
Moreover, since only total functions are allowed it this approach, it does not
clearly treat null values that are quite typical in practical database applications.

Thus, no formal object-oriented data model with the same authority as the
relational model and no object algebra so elegant as the relational algebra has
yet emerged. In all likelihood, this is explained by the fact that all previous
formalization attempts were mainly based on conventional algebraic specifica-
tion technique. However, as it is noted in [21], the algebraic framework so far
has been inadequate in describing the dynamic properties of objects and their
state transformations as well as more complex notions typical of object-oriented
paradigm such as object identity. A way for modeling these features is proposed
in some approaches based on the notion of implicit state [12,10,11,25]. This tech-
nique seems to be very convenient for representing updating methods. Partial
functions used in conventional algebraic specification approaches (for example,
in the specification language CASL [19]) seem to be a convenient way for dealing
with null values. We are going to use these techniques to solve both problems.

In general, the present paper proposes a new formalism for describing the
main aspects of objects represented in the ODMG object model [4]. We struc-
ture objects into classes within a hierarchy with a formal definition of schema.
However, our definition of schema takes into account all static and all dynamic
aspects of objects as well as the concepts of inheritance, object identity and
overloading. Attributes and methods are treated semantically in a uniform way
as partial functions. This allows us to give a uniform rigorous formalization of
null values, undefinedness, and binding modes. This also allows us to define a
database schema in a way similar to an algebraic specification of data types
and to view a database instance as a state algebra of that specification. Basic
operations updating the state are formally defined by what we call an applicable
update set. Such a set consists of a set of parallel actions operating on a valid
state and providing a valid state. Each action creates or destroys an object or
updates an attribute. In a database context an applicable update set can be
regarded as a transaction.

The rest of the paper is organized as follows. In Sect. 2 we present our formal
object model. Section 3 is the core of the paper. We define there a database state
as a state algebra and we present a new formalism for describing state updates.
In Sect. 4 we define elementary expressions of the object model, and we draw
some conclusions and indicate some further work in Sect. 5.

2 The Object Data Model

The Type System: The model is based on a type system with the following
grammar:

T ::= BASE | CLASS | rec IDENT : T , ..., IDENT : T end | set T (1)



Object-Oriented Database as a Dynamic System with Implicit State 241

where BASE and CLASS are two disjoint non empty sets of names representing
basic types and class names, respectively, IDENT is a set of identifiers, and rec
and set are two type constructors serving for the creation of record types and
set types, respectively. Elements of T are type expressions (or types). We say
that the type expression t contains the class name c if one of the following holds:

– t is c,
– t is rec p1 : t1, ..., pn : tn end and at least one of ti contains c,
– t is set t1 and t1 contains c.

In the sequel, T ∗ stands for the set of all sequences of elements of T and T u

for T ∪ {void} where void is a special type whose semantics will be explained
later. It is assumed that BASE and CLASS are endowed with a syntactic equality
’=’. This equality is extended to T , T ∗ and T u in an obvious way. An element
r of T ∗ is either the empty sequence or has the form t1 · · · tn, where n > 0 and
ti ∈ T for all i (1 ≤ i ≤ n).

The Database Schema: Roughly speaking, an object database schema is
a set of class definitions. However, providing a formal definition of the object
schema is not an obvious task. This is mainly caused by interference between
inheritance hierarchy and overloading facilities. Let us have two enumerable non-
empty disjoint sets ATT (attribute names) and METH (method names) having no
common elements with BASE and CLASS.
An object database schema (or schema in short) S then consists of :

– a finite non-empty subset C of CLASS,
– a binary acyclic relation isa over C, and
– three partial functions att : C × ATT → T , con : C × T ∗ → {void} and

meth : C × METH × T ∗ → T u

such that:

– for every c ∈ C at least one of the three sets, isa(c) = {c′ | c isa c′},
att(c) = {(a, t) | att(c, a) = t} and meth(c) = {(m, r, t)| meth(c, m, r) = t},
is not empty; and

– for every c ∈ C, if the set con(c) = {r| con(c, r) = void} is not empty, then
att(c) is not empty, too; and

– for any type t occurring in the domain or in the range of functions att, con
or meth and containing a class name c, c ∈ C.

The relation isa defines a hierarchy over C. We say c inherits c′ whenever c isa c′.
For each class name c in C, the tuple (c, isa(c), att(c), con(c), meth(c)) is called
a class definition in S with name c. A class definition thus has a unique name.
A pair (a, t) in att(c) is called the declaration of an attribute of c with name
a, and type t. Similarly, an r in con(c) is called the declaration of a constructor
of c with rank r, and a triple (m, r, t) in meth(c) is called the declaration of a
method of c with name m, rank r, and type t. The pair (r, t) is the profile of
the method. Informally, constructors serve for object initialization and methods



242 K. Lellahi and A. Zamulin

represent parameterized computations or updates over objects. The result type
of the latter is void.

Some remarks explaining the above definition are in order at this point.
1) The functionality of att and meth indicates: attribute overloading is not al-
lowed within a class while method overloading within a class is allowed provided
that they do not have the same rank. Therefore, an attribute (a, t) and a method
(m, r, t) in a class c should be respectively regarded as (c, a, t) or (c, m, r, t) in the
whole schema. However, we identify an attribute by its name where no confusion
is possible.
2) The first condition of the definition requires that a class has at least one at-
tribute or one method, otherwise it inherits at least one class.
3) The second condition requires that a class has at least one attribute if it has
a constructor.
4) The last condition of the definition requires that an attribute or a method
does not refer to a class name outside of the schema.

The Subtyping Relation: Each schema generates in a natural way a partial
order over types. Indeed, the acyclicity of isa implies that its transitive and
reflexive closure is a partial order over C. This partial order is called the inher-
itance relation and is denoted by ≤isa. We read c <isa c′ as c is a subclass of c′

or c′ is a superclass of c. The partial order <isa is extended to a partial order
�T over T in the following way:

– if b is a basic type then b �T b, and if c ≤isa c′ then c �T c′;
– if t �T t′ then (set t) �T (set t′);
– if t1 �T t′1, ..., tk �T t′k and k ≤ n, then

rec p1 : t1, ..., pn : tn end �T rec p1 : t′1, ..., pk : t′k end.

We read t �T t′ as t is a subtype of t′ or t′ is a supertype of t. The partial order
�T is extended to a partial order �∗

T on T ∗ and to a partial order �u
T on T u

by setting void �u
T void and t1 · · · tn �∗

T t′1 · · · t′k if either both sequences are
empty or k = n and ti �∗

T t′i for all i, 1 ≤ i ≤ n. In the sequel, we refer to any of
these ordering relations as a subtype relation, and we omit the subscripts where
they are understood from the context.

Hierarchical Consistency (Overloading and Overriding Problems):
Roughly speaking, overriding consists of hiding an attribute or a method of a
class in a subclass by redefining it. More precisely,

we say that an attribute (a, t′) of a class c′ is overridden in a class c
if c <isa c′ and there is an attribute (a, t) in c. Similarly, a method
m : r′ → t′ of a class c′ is said to be overridden in a class c if c <isa c′

and there is a method m : r → t in c such that r′ �∗
T r.

This overriding concept is similar, but more general, to that of programming
languages JAVA [20] and C++ [23]. In these languages overriding is strong in the
sense that the two methods, in the class and in the subclass, must have the



Object-Oriented Database as a Dynamic System with Implicit State 243

same profile. We allow the domain of an overriding method to be a supertype of
the domain of the overidden method. This phenomena is known under the name
contravariance of parameter types (see [1] for details). The problem of overriding
is a delicate problem in the object-oriented paradigm since overridden methods
can cause inconsistency during binding, and our definition of schema can give
way to such inconsistency. To avoid it, some conditions must be satisfied.

Definition 1 (covariance) The database schema S is said to satisfy the co-
variance condition iff

1. for every attribute (a, t′) in a class c′, if it is overridden in a class c as (a, t)
then t = t′, and

2. for every method (m, r′, t′) in a class c′, if it is overridden in a class c as
(m, r, t) then t �u

T t′.

Thus, an attribute type cannot be changed in a subclass, but the type of a
method can be changed to its subtype. Attribute overriding as it is defined is
just a possibility to define the same attribute in a subclass, which can be useful
for avoiding clashes in case of multiple inheritance. Covariance can be checked
automatically.

Schema Closure: It can be easily seen that the model supports multiple inher-
itance. Indeed, apart of acyclicity, there is no other restriction on isa. Thus, an
attribute name (a method name) can occur in several superclasses of a class c
with the same or different type (profile). The problem is which of these attributes
(methods) must be inherited in c ? The answer is the attribute (method) that is
in the lower superclass of c provided that such a lower superclass exists. There-
fore, we need another condition: the minimal condition. Formally, we define
super∗(c, a) = {c′ | c ≤isa c′ ∧ (∃t ∈ T att(c′, a) = t)}, and
super∗(c, m, r) = {c′ | c ≤isa c′ ∧ (∃t ∈ T u meth(c′, m, r) = t)}.

An element of super∗(c, a) is either c or a superclass of c in which a is the name
of an attribute. An element of super∗(c, m, r) is either c or a superclass of c in
which m is the name of a method with parameter types r.

Definition 2 (minimal condition) We say that a schema S satisfies the min-
imal condition if the following holds:

– For every class name c, attribute name a, method name m and sequence of
types r occurring in S, each of two sets super∗(c, a) and super∗(c, m, r) has
a minimum whenever it is not empty.

These minimums are denoted by ResA(c, a) and ResM(c, m, r) and called the
resolution of a in c and the resolution of m in c with respect to r, respectively.

Minimal conditions can be checked automatically.
If ResA(c, a) = c′, then there is an attribute (a, t) in c′ and c ≤TC

c′. If c′ = c,
then (a, t) is explicitly defined in c, that is att(c, a) = t. Otherwise, att(c, a) is not
defined explicitly, but (a, t) may be treated as an implicit (inherited) attribute



244 K. Lellahi and A. Zamulin

of c. Thus, we can extend att to (c, a) by defining att(c, a) = t. In a similar way,
if ResM(c, m, r) = c′, then there is a method m : r → t′ in c′. Then, either
c = c′ and m : r → t′ is an explicit method in c, that is meth(c, m, r) = t′, or
m : r → t′ is an inherited method in c and we can define meth(c, m, r) = t′.
Therefore, when the schema satisfies the minimum condition, the following rules
extend the functions att and meth to all inherited attributes and methods:

ResA(a, c) = c′ att(c′, a) = t

att(c, a) = t

ResM(m, c, r) = c′ meth(c′, m, r) = t′

meth(c, m, r) = t′ (2)

It is not difficult to see that S = (C, isa, att, con,meth) is a database schema,
which we call the closure of S under inheritance. Indeed, the schema S is ob-
tained from S by adding all inherited attributes and inherited methods, using
rules 2. According to these rules, att and meth are partial functions and no new
class name is added to S. Moreover, no new parameter type can be created,
therefore (S) = S. Note that constructors are not inherited.

The above discussion shows that a well-defined schema should satisfy covariance
and minimality conditions. Such a schema is called hierarchically consistent.
Hierarchical consistency guarantees that inheriting and binding will not cause
any ambiguities.

Theorem 1 ([16]) If S is a hierarchically consistent schema, then so is S.

We consider only a hierarchically consistent schema in the sequel.

3 Algebra and Database

Basic Algebra: A basic algebra B associates with each type t a set Bt, its carrier,
and with each operation of t a partial function, its implementation. The carriers
of our types are defined recursively as follows:

– The carrier of each basic type t is an enumerable set Bt. The carriers of basic
types are assumed to be pairwise disjoint.

– The carrier of each c ∈ C is the set Oid, which is supposed to be a special
set disjoint from all basic types carriers.

– The carrier of set t is Pf(Bt), the set of finite subsets of Bt.
– The carrier of rec p1 : t1, ..., pn : tn end is the set of tuples (v1, . . . , vn) so

that at least one of vi is in Bi and any other vj can be ⊥ where ⊥ is a special
value that is neither an element of a basic type nor an element of Oid.

Values of basic types are called observable values, those of Oid non-observable
values or object identities. The special value ⊥ is called the null value denoted
also by NULL in the sequel.

We assume that each basic type is endowed with some operations, and each
of them is implemented as a partial function opA : Bt1 × · · · × Btn → Bt when
n > 0, otherwise opB ∈ Bt. Each set type is assumed to be endowed with usual
set operations. A record type r = rec p1 : t1, ..., pn : tn end possesses a number



Object-Oriented Database as a Dynamic System with Implicit State 245

of partial projection operations pi : r → ti and a record construction operation
rec : t1, ..., tn → r

mapped in B to a partial function
recB : B′

t1 × ... × B′
tn → Br,

where B′
ti = Bti ∪ {⊥}, so that pBi(rec

B(v1, ..., vn)) = vi if vi is not ⊥ and it is
undefined otherwise. Note that the result of a projection function is undefined
rather than NULL if a record is projected to a field with value NULL. This helps
us to avoid typing problems which are inevitable if NULL is used in expressions.

The equality operation for two records, r1 and r2, of the same type r =
rec p1 : t1, ..., pn : tn end is defined as follows: r1 = r2 iff, for each i = 1, · · · , n,
either both pi(r1) and pi(r2) are defined and pi(r1) = pi(r2) or both pi(r1) and
pi(r2) are not defined.

The only predefined operation of c ∈ C is the comparison operation “=”,
such that o = o′ is true iff both o and o′ are the same element of Oid.

State Algebra: A state algebra represents a database state. Let B be a basic
algebra, S = (C, isa, att, con, meth) a database schema, and S its closure under
inheritance.
A state algebra A, over S is created in the following way:

1. A finite partial identity function, idAcc : Oid → Oid, is associated with each
c ∈ C so that idcc(o) and idc′c′(o) are both defined iff there is c′′ such that
c′′ ≤isa c and c′′ ≤isa c′ and idc′′c′′(o) is defined.
We denote by Ac the range of the function idAcc. For a basic type t, we define
At = Bt and we then expand At to any type t created with the use of the
type constructors.

2. A partial function aAct : Ac → At is associated with each attribute (a, t) ∈
att(c) so that, for each pair (c, c′), if c <isa c′ and o ∈ Ac, then
aAct(o) = aAc′t(o). Such a function is called an attribute function.

Thus, each subclass inherits part of its superclass attribute functions. In the
sequel, the set Ac is called the extent of c in the state A. Each o in Ac is called an
object identity of the class c. Note that the set of object identities of a superclass
includes object identities of its subclasses. Indeed, if c is a subclass of c′ then
in clause 1 above c′′ is c. Thus, if idcc(o) is defined so is idc′c′(o), in other
words Ac ⊆ Ac′ . Therefore, the semantics of inheritance in a state algebra is set
inclusion.

If o ∈ Ac, then aAct(o) is an attribute of o. An object is a pair (o, obs) where
o is an object identity and obs is the tuple of its attributes called object’s state.
We write sometimes “object o” meaning the object with the identity o. If idAcc(o)
is defined, we say that c is a type of o. Furthermore, if there is no c′ <isa c such
that idAc′c′(o) is defined, we say that c is the most specific type of o. An object o
is a proper object of a class c iff it is not in any subclasses of c. In practice, some
classes are generic and may not have proper objects (because either no attribute
is defined or inherited in the class or some its methods are not implemented).
Such a class is called an interface in [4]. For simplicity, we do not make difference
between classes and interfaces in this paper.



246 K. Lellahi and A. Zamulin

Several state algebras over a database schema S can have the same base
algebra. Following the notation of [10], we denote the set of all state algebras,
with the same base B, by stateB(S) and mean by a SB-state a state over S with
the basic algebra B.

We say that a value v of type t contains a value (object identity) o of class
c in the state A if one of the following holds:

– t is c and v is o,
– t is rec p1 : t1, ..., pn : tn end and at least one of pAi(v) contains o,
– t is set t1 and at least one w ∈ v contains o.

To define the interpretation of method names, we firstly need to introduce a
formal notion of state update.

State Update: One state can be transformed into another by a state update.

Definition 3 A state update in a SB-state A is a triple (fct, o, v) where fct is
either an attribute symbol of type t in class c or the identity function symbol
idcc, and the other two elements are the following:

– for an update (idcc, o, o), the object identity o is not in Acl, for any cl ∈ C,
– o ∈ Ac and v is either an element of At or the symbol ⊥ in all other cases.

Note that fct in a triple (fct, o, a) is actually a function symbol, i.e., a function
name qualified with its profile, which helps us to avoid ambiguity when attribute
names are overloaded in different classes.

A state update α = (fct, o, a) serves for the transformation of a SB-state A
into a new algebra Aα in the following way:

– gAαc′t′ is the same as gAc′t′ for any gc′t′ different from fct;
– fAαct (o) = a if a is not ⊥, fAαct (o) becomes undefined otherwise;
– fAαct (o′) = fAct(o

′) for any o′ different from o.

Following Gurevich [12], we say that Aα is obtained by firing the update α on
the state A. Roughly speaking, firing a state update either inserts an element
into the definition domain of an attribute function act or modifies the value of
such a function at one point in its definition domain or removes an element from
the definition domain. The state update (idcc, o, o) in fact extends the set of
object identities of a class c by a new element o and the state update (idcc, o,⊥)
contracts the set of object identities of a class c.

Definition 4 A set Γ of state updates is inconsistent if it contains

– two state updates α1 = (fct, o, v) and α2 = (fct, o, v′) s.t. v �= v′ (two state
updates defining an attribute function differently at the same point), or

– an α1 = (act, o, v) and α2 = (idc′c′ , o′,⊥) such that either c′ is c and o = o′

or t contains c′ and v contains o′ (an object is removed from a class extent
while an attribute function is forced to use it);

the update set is consistent otherwise.



Object-Oriented Database as a Dynamic System with Implicit State 247

A consistent update-set Γ applied to a SB-state A transforms it into an algebra
A′ by simultaneous firing all α ∈ Γ. If Γ is inconsistent, A′ is not defined. If Γ is
empty, A′ is the same as A. Following [18], we denote the application of Γ to a
state A by AΓ.

Definition 5 The sequential union of two consistent update-sets Γ1 and Γ2,
denoted by Γ1;Γ2, is a consistent update set created as follows:

– delete from Γ1 ∪ Γ2 any α1 ∈ Γ1 for which there is an α2 ∈ Γ2, such
that {α1, α2} is inconsistent, and any α2 = (idcc, o,⊥) ∈ Γ2 if α1 =
(idcc, o, o) ∈ Γ1.

The above definition of a consistent update set permits us to check whether
there are internal contradictions in an update set. However, a consistent update
set can contradict the state to which it should be applied. Therefore, a notion
of an applicable update set is needed.

Definition 6 A consistent update set Γ is applicable to a state A if either Γ does
not contain an update of the form (idcc, o,⊥), or for each (idcc, o,⊥) ∈ Γ:

– either there is no aAc′t such that, given an o′ ∈ Ac′ , the attribute aAc′t(o
′)

contains o or (ac′t, o′,⊥) ∈ Γ (either the object to be deleted not referenced
by any other object or all such references are deleted in this update set) ;

– either aAct(o) is not defined for any (a, t) ∈ att(c) or (act, o,⊥) ∈ Γ (either all
attributes of this object are not defined in A or they are made undefined in
this update set).

According to the above definition, we do not allow an automatic cascaded dele-
tion of objects. If such a deletion is needed, it should be programmed in a
method. Unfortunately, it is not sufficient to have an applicable update set to
produce a SB-state. The problem is caused by inheritance. For example, firing
an α = (idcc, o, o) in an SB-state A updates idAcc but does not change idAc′c′ for
all c′, c ≤isa c′. Thus, to guarantee that a state transformation produces a state
algebra, we define a closure of an update set.

Definition 7 For a consistent update set Γ, the closure Γ of Γ is constructed as
follows:

– for each (idcc, o, o) ∈ Γ, insert (idc′c′ , o, o) in Γ for all c′ such that c ≤isa c′;
– for each (idcc, o,⊥) ∈ Γ having c′′ as the most specific type of o, insert

(idc′c′ , o,⊥) in Γ for all c′ such that c′′ ≤isa c′.
– for each (act, o, v) ∈ Γ having c′′ as the most specific type of o, insert

(ac′t, o, v) in Γ for all c′ such that c′′ ≤isa c′ and (a, t) ∈ att(c′).

The first clause of the above definition guarantees that inserting an object in a
class we also insert it into all superclasses of this class. The second clause guar-
antees that deleting an object from a class we also delete it from all subclasses
in which it exists. The third clause guarantees that an update of an attribute



248 K. Lellahi and A. Zamulin

function for an object of a certain class will affect the corresponding attribute
function of all classes that are supertypes of the most specific type of the object.

Fact 1 The closure Γ of a consistent update set Γ is well defined and is consis-
tent. Moreover, if Γ is applicable to a state A so is Γ.

We say a consistent update set Γ is closed if Γ = Γ .

Fact 2 1) for any state algebra A and any closed applicable update set Γ, AΓ is
a state algebra.
2) If Γ1 and Γ2 are closed applicable update sets, so is Γ1;Γ2.
3) For any state A and applicable update sets Γ1 and Γ2, A(Γ1;Γ2) = (AΓ1)Γ2.

The set of all closed applicable updates sets in a SB-state A is denoted by
updateA(S). It serves for the definition of the semantics of the type void in
the sequel, i.e., Avoid = updateA(S). We consider only closed consistent update
sets from now on. If there is no possibility of confusion, we simply write an up-
date set in the sequel.

Database: In practice, we are interested only in a part of stateB(S) called valid
states. A valid state is normally a state satisfying a set of constraints (or axioms)
specified within the schema. In an object-oriented database the only admissible
updates are those produced by an updating method. Specifying the constraints
and checking the validity of a state is an important and sophisticated problem
which is out of the scope of this paper. Formally, it is sufficient to assume that
the application of any admissible update to a valid state produces a valid state.
Thus, without loss of generality we can suppose that all states are valid.

In the definitions that follow, for any state algebra A and any sequence of
types r = t1 · · · tn, we denote At1 × · · · × Atn by Ar which is a singleton set if
n = 0.

Definition 8 A database DB(B) consists of:

1. A subset |DB(B)| of stateB(S) called the carrier of DB(B),
2. for each c ∈ C, r ∈ con(c) and A ∈ |DB(B)|, a partial function

cAcr : Ac × Ar → Avoid, and
3. for each c ∈ C, (m, r, t) ∈ meth(c) and A ∈ |DB(B)|, a partial function

mAcr : Ac × Ar → At such that if c′ <isa c and m : r → t is inherited in c′ from
c, then mAcr(o, v) = mAc′r(o, v) for each (o, v) ∈ Ac′ × Ar.

Since constructors are not inherited, the clause 2 says that constructors in a
subclass are different from constructors in its superclasses. Since an inherited
and an overridden method in a class can not have the same profile, functions mAcr
in clause 3 are safe. This clause says that if a class inherits some method from a
superclass, then both superclass objects and subclass objects are supplied with
the same method. If a subclass overrides a method of its superclass, its objects are



Object-Oriented Database as a Dynamic System with Implicit State 249

supplied with a different method. In the case when a method is never overridden
in a subclass, it can be associated both with the class itself and all its subclasses.
The former case serves for providing dynamic (late) binding, while the last one for
providing the static (early) binding which can be considered as an optimization of
the former one. Note that some methods can be left unimplemented if interfaces
are considered.

If the method type t is void, then At is the set of admissible update sets in
A, i.e., such a method produces an update set used for state transformation.

4 Elementary Expressions

We introduce several rules for creating expressions involving attribute and meth-
od names. Special kind of expressions called transition expressions denote tran-
sitions from one state to another. Interpretation of these expressions is done
with the use of update sets. In this way, a mechanism of message passing is
provided on one hand, and a base for a more developed data manipulation lan-
guage is created on the other hand. Let S = (C, isa, att, meth) be a database
schema, DB(B) a database, A ∈ |DB(B)| a database state, and Y a set of C-sorted
variables Then we define the set of S-expressions, T (S, Y ). Given a valuation
function u : Y −→ A, we also define the interpretation [[τ ]]A of an expression
τ ∈ T (S, Y ).

1. If y ∈ Yc, then y is an expression of type c, where Yc is the c-subset of Y .
Interpretation: [[y]]A = u(y).

2. If c′ ≤ c and τ is an expression of type c′, then τ is an expression of type c.
Interpretation: if τ evaluates in A to an o ∈ Ac′ , then by definition o ∈ Ac
and can be treated as an object of type c. Thus, a subtype expression can
be used in a context where an expression of its supertype is needed.

3. If (at, t) is an attribute from att(c) and τ is an expression of type c, then
τ.at is an expression of type t called an attribute access.
Interpretation: [[τ.at]]A = atAc([[τ ]]A) if τ is defined in A and atAc is defined
for [[τ ]]A; [[τ.at]]A is undefined otherwise. Thus, an attribute value is produced
by the corresponding attribute function.

4. If τ is an expression of type t, then D(τ) is an expression of type Boolean.
Interpretation: [[D(τ)]]A = true if τ is defined in A, and [[D(t)]]A = false
otherwise.
This kind of expression helps us to check whether an attribute is provided
with a value, i.e., whether it is not NULL.

5. If (m, r, t) is a method from meth(c), where r = t1 . . . tn, and τ, τ1, . . . , τn

are expressions of types c, t1, . . . , tn, respectively, then τ.m(τ1, . . . , τn) is an
expression of type t called a method call. The expression is called a transition
expression if it is an expression of type void. The method call is always type-
safe since parameter types of an overridden method are in the contravariant
position with respect to the parameter types of the original method.



250 K. Lellahi and A. Zamulin

Interpretation: If c′ is the most specific type of the object [[τ ]]A with a
method (m, r′, t′) such that r ≤isa r′ and t′ ≤isa t, then

[[τ.m(τ1, . . . , τn)]]A = mA
c′r′([[τ ]]A, [[τ1]]A, . . . , [[τn]]A)

if τ and each τi, i = 1, . . . , n, are defined in A and mA
c′r′ is defined for the

tuple ([[τ ]]A, [[τ1]]A, . . . , [[τn]]A); [[τ.m(τ1, . . . , τn)]]A is undefined otherwise. Thus,
the interpretation of a method call in a state A causes the invocation of the
method associated with the most specific type of the object [[τ ]]A. In this
way, a method name is bound exactly to a method associated with the given
object independent of its current type (e.g., τ can be evaluated to an object
whose the most specific type is a subtype of the type of τ).1 This phenomena
is known in the object-oriented programming paradigm as dynamic (late)
binding. Note that the interpretation of a transition expression produces an
update set used for state transformation.

6. If c is the name of a class, x a variable, and τ a transition expression using x
as a term of type c and not having x as a fresh variable, then new(x : c) in τ
is a transition expression with a fresh variable x called import instruction.
Interpretation: [[new(x : c) in τ ]]A = Γ ; [[τσ]]A′

where Γ = {(idcc, o, o)}, o ∈ Oid and o /∈ Acl for any cl ∈ C, A′ = AΓ, and
σ = {x �→ o} is a variable assignment.
Thus, the interpretation of this transition expression causes the creation of
a new object used in the subsequent transition expression.
A special case of the above expression is the object creation instruc-
tion defined as follows. If (t1, ..., tn) ∈ con(c), i.e. it is a constructor
in c, and τ1, . . . , τn are expressions of types t1, . . . , tn, respectively, then
create c(τ1, . . . , τn) is a transition expression called object creation instruc-
tion.
Interpretation: [[create c(τ1, . . . , τn)]]A = Γ ; cA

′
(o, [[τ1]]A

′
, . . . , [[τn]]A

′
),

where A′ = AΓ, Γ = {(idcc, o, o)}, o ∈ Oid, and o /∈ Acl for any cl ∈ C.
Thus, the interpretation of this transition expression causes the creation of
a new object initialized by the corresponding constructor.

7. If τ is an expression of class c such that c is the most specific type of τ , then
delete τ is a transition expression called a class contraction instruction.
Interpretation:
– [[delete τ ]]A = Γ1 ∪ Γ2, where Γ1 = {(act, [[τ ]]A,⊥)} for all (c, t) ∈ att(c)

and Γ2 = {(idcc, [[τ ]]A,⊥)} if there is in A no maplet 〈o′ �→ v〉 such that
v contains [[τ ]]A,.

– [[delete τ ]]A in undefined otherwise.
Thus, the interpretation of this transition expression causes the deletion of
an object from the database only in case it is not referenced by an attribute
function of any other object; otherwise the interpretation is undefined (i.e.,
an object cannot safely be deleted).

1 There might be a dilemma in choosing the right method if we have in c both (m, r, t)
and (m, r′, t′) such that r′ ≤ r. We believe, however, that the problem can be resolved
by an algorithm based on best matching of type parameters.



Object-Oriented Database as a Dynamic System with Implicit State 251

Fact 3 Both import instruction and object creation instruction produce appli-
cable update sets.

Fact 4 Class contraction instruction produces an applicable update set.

5 Conclusions and Future Works

We have introduced a formal object-oriented data model and defined its seman-
tics in the style of dynamic systems with implicit state. For this purpose, a formal
algebraic model of a class of objects has been elaborated. The model naturally
simulates the notions of object and object class in object-oriented database sys-
tems and object programming languages. Each object possesses a state and a
unique identifier. In each database state, for each class, a finite set of unique
identifiers is provided by the state algebra of the given schema. An object state
is represented by a number of attributes which can be updated. Attributes are
defined as functions from object identifiers to values of some other (attribute)
types. An object state can be observed or updated by a method that is a state-
dependent function. However, the state is an implicit argument for all methods
and an implicit result for state updating methods. This has permitted us to
dramatically simplify the semantics of the methods.

We have shown that the model supports all important aspects of objects,
namely inheritance, overloading, overriding, and early and late binding. We have
deduced a subtyping relation from inheritance and we have used it for giving a
nice formalization of delicate problems such as attribute and method resolution,
multiple inheritance, contravarience/covariance and binding modes.

Several particularly interesting aspects of the model have not been presented
here including multiple collections, and a formal language for coding methods.
We believe that our elementary term constructors, defined in Sect. 4, can be
enriched with other term constructors in order to define such a formal language.
We are proceeding with research in these directions.

Although we have stressed database aspects in the paper, we claim that with a
slight change of terminology the present work can be seen as a formal description
of object programs in programming languages too. For instance, our concept of
applicable update set has allowed us to give a nice semantics of the type void
used in most object-oriented languages. We claim that our work provides for
a better understanding of the concepts of objects and for clarifying the border
between object databases and object programming languages, which can help to
put together ideas from the two communities.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. C.Beeri. A Formal Approach to Object-Oriented Databases. Database & Knowledge

Engeeniring (5), 1990, pp.353-382.
3. P. Buneman and S. Naqvi and V. Tannen and Limsoon Wong. Principle of Pro-

gramming with Complex Objects and Collection types. Theorical computer Sci-
ence, 149:3-48, 1995.



252 K. Lellahi and A. Zamulin

4. R. Cattel et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.
5. S. Cluet. Designing OQL: Allowing object to be queried. Information Systems

23(5), pages 279-305, 1998.
6. S. Cheri, R. Marthey-Chirema. A model and Language for Archive DOOD Sys-

tems. Proceedings of 2d international East-West Database Workshop, Klagenfurt,
Austria, 25-28 Sept. 1994, Springer-Verlag 1995, pp. 3-16.

7. L. Fegaras. Query Unnesting in Object-Oriented Databases. Proceedings of the
ACM SIGMOD International Conference on Managmenent of data, Seattle, Wash-
ington, pages 49-60, 1998.

8. L. Fegaras and D. Maier. Towards an Effective Calculus for Object query languages.
In Proc. of ACM SIGMOD International Conference on Management of Data,
pages 47-58,1995.

9. J.A. Goguen and R. Diaconescu. Towards an algebraic Semantics for the object
paradigm. Recent Trends in Data Type specification, LNCS vol. 785, 1994, pp. 1-29.

10. M.-C. Gaudel, C. Khoury, A. Zamulin. Dynamic systems with implicit state. Fun-
damental Approaches to Software Engineering, LNCS, vol. 1577, 1999, pp.114-128.

11. M. Grosse-Rhode. Algebra Transformation Systems And Their Composition. Fun-
damental Approaches to Software Engineering, LNCS, vol. 1382, pp. 107-122, 1998.

12. Y. Gurevich, Evolving Algebras 1993: Lipary Guide, Specification and Validation
Methods,Oxford University Press, 1994.

13. W. Kim. Modern Database Systems. The Object Model, Interoperability, and Be-
yond, Addison-Wesley, 1995.

14. G. Lausen and G. Vossen. Models and Languages of Object-Oriented Databases,
Addison-Wesley, 1997.

15. C. Lecluse and P. Richard and V. Velez. The O2 Data Model, In François Ban-
cilhon, Claude Delobel, and Paris Kanellakis, editors, Building an Object-Oriented
Database System, The Story of O2 Morgan Kaufmann, 1992.

16. K. Lellahi. Modeling data and objects: An algebraic viewpoint. Proceeding of the
first summer school in theoretical aspects of computer science, Tehran-Iran July
2000 (to appear in LNCS).

17. K. Lellahi and R. Souah and N. Spyratos. An algebraic query language for Object-
Oriented data Models. DEXA97, LNCS N0 1308, pages 519-528, 1997.

18. K. Lellahi, A. Zamulin. Dynamic Systems Based On Update Sets. Proc. of the 2nd
International Conf. Computer Science and Information Technologies (CSIT’99),
August 17–22, 1999, Yerevan, Armenia, 1999, pp. 346-349, also in Reserch report
No 99-03, LIPN, Univ. Paris 13 (France), 1999.

19. P. Mosses. CASL: a guided tour of its design. Recent Trends in Algebraic Devel-
opment Techniques: Selected Papers from WADT’98, Lisbon, Springer LNCS, vol.
1589, 1999.

20. P. Niemeyer and J. Peck. Exploring Java. O’Reilly & Associates Inc, 1996.
21. F.Parisi-Presicce and A. Pierantonio. Dynamic Behaviour of Object Systems. Re-

cent Trends in Data Type specification, LNCS vol. 906, 1995, pp. 406-419.
22. Klause-Dieter Schewe. Specification of Data Intensive Application Systems. Habil-

itationsschrift, Technischen Universitaet Cottbus, 1995.
23. B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley,

1996.
24. R. Souah. Une Sémantique Algébrique pour Bases de données Orientées objet. PhD

thesis, Université Paris-sud (Orsay), 1999.
25. E. Zucca, Fundamental Study from static to dynamic abstract data-type: an in-

stutition transformation, Theorical Computer science 216 (1999), pp 109-157.



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 253-265, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

The Use of Aggregate and Z Formal Methods for 
Specification and Analysis of Distributed Systems 

Henrikas Pranevicius 

Business Informatics Department, Kaunas University of Technology 
Studentu 50, LT-3028, Lithuania 

hepran@if.ktu.lt 

Abstract. The paper present an approach the use Z specification language for 
development aggregate formal specifications. The use of Z schemas in aggre-
gate model permits mathematically strictly define data structures used in system 
description. Modified aggregate approach permits to specify dynamic behaviour 
of distributed information systems. The presented approach permits to describe 
systems in different abstraction levels. It is illustrated by two specifications of 
commerce logistics centre which one is used for developing simulation model 
and other for creating of information system specification. 

Keywords. Distributed systems, formal specification, Z specification language, 
aggregate approach, simulation, validation, logistics centre. 

1 Introduction 

Distributed systems arise in many applications, including telecommunications, dis-
tributed information processing, scientific computations and real-time process control. 

Two properties are essential for distributed systems: 

�� computation activity is represented as the concurrent execution of sequential proc-
esses, 

�� processes communicate by passing messages. 

The models of computation generally considered to be distributed are process 
models, in which computational activity is represented as the concurrent execution of 
sequential processes [1]. The process models that are most obviously distributed are 
ones in which process communicate by message passing: one process sends a mes-
sage by adding it to a message queue, and another process receives the message, by 
removing it from queue. These models vary in such details as the length of the mes-
sage queues and how long a delay may occur between when as message is sent and 
when it can be received. 

Two kind of analysis are used for analysis of distributed systems: behaviour and 
performance analysis. All possible trajectory are analysed during behaviour analysis 
and it permits to check a correctness of specification. Various validation and verifica-
tion methods are used for correctness analysis. During performance analysis devel-
oped specification of distributed system is executed by computer. Performance analy



254         H. Pranevicius 

 

sis is carried out by simulation means. The main characteristics which are analysed 
during behaviour and performance analyses are named in Table 1.  

Table 1. Analysis methods and analysed characteristics 

Kind of analysis 
Behaviour Performance 

Used methods 
Validation and verification Simulation 

Analyzed characteristics 
Safety Lengths of queues 

Static and dynamic deadlocks Transmission time of messages 

Boundedness Waiting time 
Invariant properties Units utilisation coefficients 
 … … 

Liveness  
P�Q  
Termination  
 …  

 
Popular specification languages used for design of distributed systems are: 

�� in protocol engineering: SDL, ESTELLE, LOTOS; 
�� in software engineering: Z, VDM, Raise. 

Mathematical methods used in specification languages are: 
�� extended state automata: SDL, ESTELLE; 
�� calculus of communicating systems: LOTOS; 
�� theory of sets and mathematical logis: Z, VDM; 
�� piece-linear aggregates (piece-linear Markov process): ESTELLE/Ag. 

The suggested in the paper technique is tightly related to aggregate approach [2], 
which permits to integrate behaviour and performance analysis on the base of single 
specification. Such possibility permits to prove that developed specification is correct 
and to evaluate performance characteristics of an analysed system. For example, ana-
lysing telecommunication protocol it is not enough to prove correctness of its specifi-
cation but also it is needed correctly to choose parameters of protocols such as timer 
values, buffer sizes, channels capacities, etc.  

In the application of the aggregate approach for system specification, the system is 
represented as a set of interacting piece-linear aggregates (PLA) [2,3]. The PLA is 
taken as an object defined by a set of states Z, set of input signals X, and set of output 
signals Y. The aggregate functioning is considered in a set of time moments t �  T. 
The state z �  Z, the input signals x � X, and the output signals y �  Y are considered to 
be time functions. Apart from these sets, transition H and output G operators must be 
known as well. 

The state z �  Z of the piece-linear aggregate is the same as the state of a piece-
linear Markov process, i.e.: � � � � � �� �,, tzttz $$�  where � �t$  is a discrete state compo-

nent taking values on a countable set of values; and � �tz$  is a continuous component 

comprising of � � � � � �tztztz k$$$ ,,, �

��
 co-ordinates. 



 The Use of Aggregate and Z Formal Methods for Specification and Analysis         255 

 

When there are no inputs, the state of the aggregate changes in the following man-
ner: � � const�t$ , � � $$ %��dttdz , where � �k$$$$ %%%% ,,, �

��
�  is a constant vector. 

The state of the aggregate can change in two cases only: when an input signal ar-
rives at the aggregate or when a continuous component acquires a definite value. The 
theoretical basis of piece-linear aggregates is their representation as piece-linear 
Markov processes.  

This paper presents a technique that extends aggregate approach by means of Z 
specification language [4], [5], [6]. 

The main element of Z specification language is a schema, which is a piece of 
mathematical text that specifies some aspect of the analysed system. Schema contains 
a declaration part and a predicate part. The predicate pat expresses some requirements 
about the values of the variables. The predicate part of schema defines conditions that 
constrain the values declared in the declaration part. 

The name of the schema can be used else where in specification to refer the 
mathematical text. The writing of specifications often involves reusing the same no-
tion many times, and the use of names for notion many times, and the use of names 
for notions improves the readability of specifications, and reduces errors that arise 
when one specification is copied into other one context. 

The use of Z schemas in aggregate model permits mathematically strictly define 
data structures used in system description. Main advantage of the suggested technique 
is its ability to specify time moments of events occurrence in a system and, at the 
same time, to describe complex data structures. 

The structure of the paper is as follows. Section 2 is about the use of Z specifica-
tions for description of abstract data types. Aggregate specification of simulation 
model of commerce logistics centre presented in Sect. 3. Simulation and validation 
results of commerce logistics centre are given in Sect. 4. Section 5 presents the exten-
sion of simulation model of commerce logistics centre with purpose to use it for de-
velopment information system specification. 

2  Description of Abstract Data Types Using Z 

Abstract data types, as we can see from it name, are types in which a part of it proper-
ties is not considered (either a consideration is limited only on a part of type proper-
ties). 

Abstract data types have to satisfy the following requirements: 
�� All operations, which are possible to perform with data of that type, have to be 

defined in data type definition;  
�� User of abstract data type can operate with values of that type by using only the 

defined type operations. However, one cannot operate directly with their detailed 
representations. 
Queues will be presented as abstract data description in Z. This abstract data type 

will be used in Sect. 2 in specification of commerce logistics centre. 
Queues used in the discrete component of aggregate state are defined as abstract 

data type. Queue is described by schema queue: 

� &ffdomRNfRseq #..: ���� �'�
� ; 



256         H. Pranevicius 

 

� �
� � � �

Qsize

nQQnQtail

QQhead

RseqQ

Nsize

RseqRseqtail

RRseqhead

RseqQ

iii

ii

i

#

#

1

1

11..1:

1

:

:

:

:

:

�

���

�
�

�

�

�

��

��

�

�

queue

 
Operations ENQ(Qi, x) and DEQ(Qi, y) describe processes of placement and re-

moval elements from FIFO queue correspondingly. 

�Rx

queue

:?

ii QQ �( � ?x

1## ��( ii QQ

� �xQENQ i ,

 

�Ry

queue

:!

ii QtailQ �(

i

ii

Qheady

QQ

�
��(

!

1##

� �yQDEQ i ,

 

Operation DEQ(Qi, k, y) describes removal of k-th element from queue. 
 
��� ��� ��

�
� �� ����������

�����
�� � �

�

 
)()1..(1:),(pre nQknQk ii �� �

)()..(:),(after # knQkQnQk iii ��� ��
),(after),(preQ'

i ii QkQk�
)(y! kQi�

 
 

3  Aggregate Specification of a Commerce Logistics Centre 

Conceptual Model. System consists of N shopping centres, Warehouse and Produc-
ers. The request of goods from Shopping centre is passed to Warehouse when an 
amount of goods in Shopping centre becomes less than threshold size. Each request in 
Warehouse is processed. If amount of goods in Warehouse is enough, then goods are 
delivered to Shopping centre. In other case request is placed to queue of requests. The 
functioning of Warehouse is the same as Shopping centre. 



 The Use of Aggregate and Z Formal Methods for Specification and Analysis         257 

 

Aggregate specification consists of aggregates Shopping_centre_i, Ni ,�� ; Ware-
house and Producers (Fig. 1). 

 
 

 
 

Shopping centre 2 

 

Shopping centre N 

 

Shopping centre 1 

 

Producers 

 

 
 

Warehouse 
 

… 

1 

1 

1 

1 

1 

1 

1 1 

1 

2 

N 

N+1 

1 

2 

N 

N+1 

. . . 
. . . 

 

Fig. 1. Aggregate scheme of commerce logistics centre 

Aggregate Shopping centre_k, Nk ,�� . 
 

1. The set of input signals, }{
�

xX � , where ),(
�����

xxx � , and kx �
��

, 
��

x - 

amount of delivered goods. 
2. The set of output signals. }{

�
yY � , where ),(

�����
yyy �  and ky �

��
, 

��
y - 

amount of requested goods. 
3. The set of external events � &

�
eE (�( , where 

�
e(  means that goods have been deliv-

ered. 
4. The set of internal events }{

�
eE ((�(( , where 

�
e ((  means the time instant, when 

amount of goods at shopping centre is evaluated. 
5. Controlling sequences: 

� & ,,, )��(( �
�

je j*  where � &j*  - time interval after which amount of goods at 

shopping centre is evaluated. 
6. Parameters: 

s'  - the amount of requested goods, 

�
s  - threshold. When )( mts  becomes less than 

�
s  request for goods is issued. 

7. Discrete component of state: 
)}(),({)( mmm tstst

�
�$ , where )( mts  - stocks of goods in Shopping centre, )( mts

�
- 

value of threshold. 
8. Continuous component of state: 

� &),()( mm tewtz
�
((�$ . 

9. Initial state: 

��������
ststtewsts ���((� )(,),(  ,)( * . 



258         H. Pranevicius 

 

10. Transition and output operators: 
)(

�
eH (( : 

 
���

xtsts mm ��� )()( . 

)(
�

eH (( : 

 jmm tsts +��� )( (0, max)(
�

), 

where j+  - demand for goods. 

 jmm ttew *��(( � ),(
��

. 

)(
�

eG ( : 

),,( sky '�
�

 if )()(
�� ��� mm tssts . 

 
Aggregate Warehouse 

 
1. The set of input signals },,,,{

��� �� NN xxxxX � , where ),(
��� ii xxx � , 

�ix  - num-

ber of shop, 
�ix  – amount of requested goods, 

��Nx  - amount of goods from pro-

ducers. 
2. The set of output signals },,,,{

��� �� NN yyyyY � , where ),(
�� iii yyy �  and 

ky �
��

, 
��

y  - amount of requested goods. 

3. The set of external events � &
��� �((((�( NN eeeeE ,,,, � , where �� ��( Niei , ,  - arrival 

of ix  signal. 

4. The set of internal events },,,,{
��� �((((((((�(( NN eeeeE � , where Niei , , ��((  means time 

instant goods delivery to i-th shopping centre, 
��((Ne  means end of request 

processing for goods delivery. 
5. Controlling sequences: 

� & ,,,,, )���(( �� jNie iji *  � & )��(( � ,, �
�

je jN + , where ij*  - duration of time in-

terval for goods delivery to i-th shopping centre; j+ - duration of time interval for 

request processing. 
6. Parameters: 

s'  - the amount of requested goods, 
�

s  - threshold. 

7. Discrete component of state: 
� &)(),(),(),(),(),(),()( mmmmmNmmm tstQtqttdtdtst

��
,$ �� , where )( mts - stocks of 

goods in Warehouse; )( mi td  - amount of delivered goods to i-th shopping centre, 

)( mts
�

- value of threshold. 

�
                                                                        otherwise; ,

,th -i from  procesed is goods ofrequest  ,
)(

�

� entreshopping c
tm,  

)( mtq  - amount of goods in request. 

8. Continuous component of state: 
� &),( ),,(,),,()( mNmNmm tewtewtewtz

�� �((((((� �$ . 



 The Use of Aggregate and Z Formal Methods for Specification and Analysis         259 

 

9. Initial state: 

�����
ststQsts m � �� )(,)(  ,)( . 

10. Transition and output operators: 

)(
�

eH ( : Ni ,�� . 

)�((��
�

�
�

                                        otherwise;  ),(

,),()( if ,)(
)(

m

mNimim

m
ts

tewxtsxts
ts

���

�
 

)�((�
�

�
�

               otherwise;  )),,(),((

           ,)()( if ),(
)(

��

��

�

iim

mNimm

m
xxtQENQ

,tewxtstQ
tQ  

)�((�
�

�
�

                                        otherwise;  ),(

               ,),()( if ,
)(

m

mNimi

m
tq

tewxtsx
tq

���

�
 

((

)�((��
�((

�

�
��

                                          otherwise;  ),,(

                     ,),()( if ,
),(

mN

mNimm

mN
tew

tewxtst
tew

�

��

��

+
 

)(
�

eG ( : 

)()(  ,
��� �� ��'� mmN tsstsifsy . 

)(
��(NeH : 

�

��)�((���
�

��

��
�

                                        otherwise;  ,)(

,),()( if ,)(
)(

��

���

�

��

nm

mNmNm

m
xts

ktewtQnxts
ts  

��)�((�
�

�
�

                                                 otherwise;  ),(

         ,),()( if ),),((
)(

m

mNmm

m
tQ

ktewtQktQDEQ
tQ

��
�

�
 

��)�((�
�

�
�

                                                   otherwise;  ),(

                          ,),()( if ,
)(

m

mNm

m
t

ktewtQn
t

,
,

��
��

�
 

��)�((�
�

�
�

                                                    otherwise.  ),(

            ,),()( if ,
)(

m

mNm

m
tq

tewtQn
tq

��
��

�
 

((

��)�((��
�((

�

�
��

                                                 otherwise.  ),,(

            ,),()( if ,
),(

mN

mNmjm

mN
tew

tewtQnt
tew

�

�

��

��

 

� �
� � � � � �� &

����
�

�
��

���� Nmmj
tQj

tsnnntQjk
m

, ,,|min
#

, 

)(
��(NeG : 

syN '���  if 
����

�� sntsktewtQ NmmNm -����)�((� �� ,)(),()( . 

)( ieH (( : Ni ,�� . 

 �
�

�� )( mi td . 

)( ieG (( : 

 )( mii tdy � . 



260         H. Pranevicius 

 

)(
��((NeH : 

 � �� � � �mmt tqtd
m

���, , 

� � � � jtmmt mm
ttew ,),( ,, *��(( �� , 

 
� �

� � � � � �� &mmj
tQj

tsnnntQjk
m

���
��

���
�

 ,,|min
#

, 

)(),( mk tQnn �
��

, 

  � �
��

��
otherwise;   ,

, if  ,

�

�
�

�

kn
tm,  

  � �
��

��
otherwise;   ,

, if  ,

�

�
�

�

kn
tq m  

  
((

���
�((

�
��

otherwise;  ),,(

,k if          ,
),(

mN

jm

mN
tew

t
tew

�

��

�+
 

  
� �� � ��

��
otherwise;            ),(

,k if  ,,t
)(

m

m

m
tQ

kQDEQ
tQ

�

�
 

  � �
� �
� �

���
��

       otherwise. ,

, if  ,

m

m

m
ts

knts
ts

�
�

�
 

 )(
��((NeG : 

  syN '��� , if � � � �
�� ��� mm tssts . 

 
Aggregate Producers 
 
1. The Set of Input Signals: � &

�
xX � , where 

�
x  - request for delivery of goods. 

2. The Set of Output Signals: � &
�

yY � , where 
�

y  - amount of delivered goods. 

3. The Set of External Events: � &
�

eE (�( , where 
�

e(  - arrival of 
�

x  signal. 

4. The Set of External Events: � &
�

eE ((�(( , where 
�

e ((  - duration of time interval of 

goods delivering from Producers. 
5. Controlling Sequences: 

� & )�(( ,  , �
�

je j*�  

6. Parameters: 
� � � �� &mm tewtz ,

�
((�$  

7. Discrete Component of State: 
� � � &)( mm tdt �$ , where )( mtd  - an amount goods delivered to Warehouse. 

8. Initial State: 
� � )�((

��
tew , , �

�
�)(td . 



 The Use of Aggregate and Z Formal Methods for Specification and Analysis         261 

 

9. Transition and Output Operators: 
 )(

�
eH ( : 

  � � jmm ttew *��(( ���
,  

  
��

xtd m �� )( . 

 )(
�

eH (( : 

  � � )�(( ��� mtew , , �
�

�� )( mtd . 

 )(
�

eG (( : 

  )( mtdy �
�

. 

4 Results of Validation and Simulation of Commerce Logistics 
Centre 

Formal specification presented in the previous section was used developing simula-
tion model of commerce logistics centre. Simulation model was created using system 
PRANAS-2 [3], which consists of the following software tools: 
�� knowledge-based specification editor, 
�� validation subsystem, 
�� simulation subsystem. 

Validation of specification is carried out using reachable state method that permits 
to analyse such system properties: boundedness, absence of specification, complete-
ness, static and dynamic deadlocks freeness, termination. 

Illustration of validation results are presented in Table 2. Numbers that are written 

after words Shopping centre_i, ��,�i ; Warehouse, Producers mean values of corre-
sponding coordinates of aggregates. Table 2 illustrates alteration of discrete coordi-
nates starting from initial state till the state when the first request for goods will be 
executed in warehouse. 

Table 2. Illustration of validation results 

Shopping centre_1 : 7 4 
Shopping centre_2 : 7 4 
Shopping centre_3 : 7 4 
Warehouse : 25 0 0 0 0 0 0 16 
Producers : 0 

. Event "
�

e  in Shopping centre_3 
Shopping centre_1 : 7 4 
Shopping centre_2 : 7 4 
Shopping centre_3 : 5 4 
Warehouse : 25 0 0 0 0 0 0 16 
Producers : 0 

. Event "
�

e  in Shopping centre_1 



262         H. Pranevicius 

 

 
Shopping centre_1 : 4 4 
Shopping centre_2 : 7 4 
Shopping centre_3 : 5 4 
Warehouse : 25 0 0 0 0 0 0 16 
Producers : 0 

. Event "
�

e  in Shopping centre_2 
Shopping centre_1 : 4 4 
Shopping centre_2 : 5 4 
Shopping centre_3 : 5 4 
Warehouse : 25 0 0 0 0 0 0 16 
Producers : 0 

. Event "
�

e  in Shopping centre_3 
Shopping centre_1 : 4 4 
Shopping centre_2 : 3 4 
Shopping centre_3 : 4 4 
Warehouse : 25 0 0 0 2 0 0 16 
Producers : 0 

. Event "
�

e  in Shopping centre_2 

Output signal 
�

y  in Shopping centre_2 

Event '
�

e  in Warehouse 
Shopping centre_1 : 4 4 
Shopping centre_2 : 3 4 
Shopping centre_3 : 4 4 
Warehouse : 17 0 0 0 2 8 0 16 
Producers : 0 

. Event "
�

e  in Warehouse 
Shopping centre_1 : 4 4 
Shopping centre_2 : 3 4 
Shopping centre_3 : 4 4 
Warehouse : 17 0 8 0 0 0 0 16 
Producers : 32 

. Event "
�

e  in Shopping centre_1 

Output signal 
�

y  in Shopping centre_1 

Event '
�

e  in Warehouse 

Output signal 
�

y  in Warehouse 

Event '
�

e  in Producers 
Shopping centre_1 : 1 4 
Shopping centre_2 : 3 4 
Shopping centre_3 : 4 4 
Warehouse : 9 0 8 0 1 8 0 16 
Producers : 32 

 



 The Use of Aggregate and Z Formal Methods for Specification and Analysis         263 

 

The results of simulation are presented in Fig. 2. The simulation experiments have 
been carried out at the following parameters of the system: 

Shopping centre_i, ��,�i : � � �����
�
��'��/ ssij  , ,* . 

Warehouse: �������������
�
��'��� ssi jij   ,  ],.;,[  ;, ],,[ +* . 

Producers: ],,[ �	���j*  

Results of simulation are presented in Fig. 2. 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

3 5 7 9

 
Fig. 2. dependencies of Q length in Warehouse between mean values of selling in shopping 
centres 

5 Further Detailing of Aggregate Specification of Commerce 
Logistics Centre 

Model presented in previous section is oriented to carry out performance analysis of 
commerce logistics centre. In this section it will be shown how aggregate model can 
be extended with the purpose to use it for development of information system. Simu-
lation model operates with only one kind of goods. Commerce logistics centres usu-
ally operates with a lot of goods. That’s why new details have to be introduced in the 
specification. 

Extension of specification has been done for aggregate Warehouse. A new abstract 
data type Warehouse is introduced that has operations get, request and delivery. 

The schema warehouse describes quantities of goods in warehouse (in_stock), the 
queue of requests that can not be processed due to lack of goods (queue_requests), 
threshold values for each product (threshold_level). 
����� warehouse ���������������������� 
�in_stock : product_names � � 
�queue_requests : seq (� � product_names � �) 
�threshold_level : product_names � � 
�������������������������� 
�dom in_stock = dom threshold_level 
��������������������������������� 

Q 

s0=6 
s0=8 

M[+i] 

s0=4 



264         H. Pranevicius 

 

The schema get describes the request operation. The input of schema is list re-
quested goods and their quantities and output is list of goods and their quantities that 
will be delivered. 
����� get ��������������������������� 
�� warehouse 
�s : seq(� � (dom list? / dom list!) � � | 
� #s = #(dom list? / dom list!) 
�list? : product_names � � 
�list!: product_names � � 
�shop? : � 
�������������������������� 
�don list? 	 in_stock 
�list! =
g : product_names; n : � |  
� (g � n) � list?  in_stock(g) � list?(g)} 
�in_stock’ = in_stock � {g : product_names; n : � | g � n � list! � 
� g � (in_stock(g) – list? (g))} 
�threshold_level’= threshold_level 
�queue_requests’ = queue_requests�s 
��������������������������������� 

The schema request creates the list of requested products. 
����� request ������������������������ 
�� warehouse 
�list! : product_names � � 
���������������������� 
�list! : {g : product_names; n : � | 
� (in_stock g < threshold_level) � 
� g � (3 � threshold_level g)} 
�in_stock’ = in_stock 
�queue_requests’ = queue_requests 
�threshold_level’ = threshold_level 
��������������������������������� 

The schema delivery creates the list of delivered products. 
����� delivery ����������������������� 
�� warehouse 
�list? : product_names � � 
���������������������� 
�in_stock’ = in_stock � 
� {g : product_names; n : � | g � n � list? � 
� g � (in_stock(g)+list? (g))} 
�in_stock’ = in_stock 
�queue_requests’ = queue_requests 
�threshold_level’ = threshold_level 
��������������������������������� 



 The Use of Aggregate and Z Formal Methods for Specification and Analysis         265 

 

Correspondences between components of aggregate Warehouse and above intro-
duced Z schemas are presented in Table 3. 

Table 3. Correspondences between components of aggregate Warehouse and above introduced 
Z schemas 

Component of aggregate Warehouse Z schema 
� � � � � �mmm ttQts

�
s , ,  Warehouse 

� � � �
�� �� (((( NN eGeH  ,  request 

� � � �ii eGeH (((  ,  get 

� �
��((NeG  delivery 

6 Conclusions 

Proposed. formal specification approach which use both aggregate approach and Z 
specification language has the following properties: 
�� permits on the base of single specification to carry out both performance and be-

haviour analysis; 
�� permits to specify dynamic behaviour of distributed information systems. 

References 

1. Lynch, N.A. Distributed algorithms. Morgan Kaufmann Publisher, San Francisco (1996) 
2. Pranevicius, H. Aggregate approach for specification, validation, simulation and implemen-

tation of computer network protocols. Lectures notes in Computer Science, 502, Springer-
Verlag (1991) 433-477 

3. Pranevicius, H. Formal Specification of Simulation Models Using Aggregate and Z Formal 
Methods. Second International Conference “Simulation, Gaming, Training and Business 
Process Reengineering in Operations”, September 8-9, 2000, Riga, Latvia (2000) 350-354 

4. Pranevicius, H., Pilkauskas, V., Chmieliauskas, A. Aggregate approach for specification and 
analysis of computer network protocols. Kaunas, Technologija (1994) 

5. Poter, B., Sinclair, J. Till, D. An Introduction to Formal Specification and Z. Prentice Hall 
(1996) 

6. Fenton, N., G. Hill. Systems construction and analysis: A mathematical and logical frame-
work. McGraw Hill Book Company (1993) 

 
 
 



Detecting Termination of Active Database Rules Using
Symbolic Model Checking

Indrakshi Ray and Indrajit Ray

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873
Email:

�
iray, indrajit � @cs.colostate.edu

Abstract. Many algorithms have been proposed that detect non-termination of
active database rules. However, most of these provide a conservative estimate –
they detect all potential cases of non-termination. The onus is on the database
programmers to further analyze these cases and give more definite results about
non-termination. In this paper we show how the database programmer can auto-
matically detect non-termination using an existing symbolic model checker. Our
approach does not require much expertise on the part of the database programmer,
and can be used to detect termination cases which the conservative approaches re-
ject as non-terminating ones.

1 Introduction

Although active database systems [1, 7–9, 16–18] appear to be a promising technology,
users are reluctant to use it because of the uncertainty associated with how a set of
active database rules acting on their own will interact with each other and with other
transactions [15]. To ensure that the application will behave in a predictable manner,
active database applications need to be formally verified. In this paper we show how
termination of active database rules can be formally verified using model checking.

Detecting termination of active database rules is, in general, an undecidable prob-
lem. Researchers have proposed sufficient conditions [2, 11, 12] that ensure termination.
One such condition is the acyclicity of the triggering graph [2]. Absence of cycles in
a triggering graph indicates that the rules will eventually terminate. Cycles in the trig-
gering graph indicate potential for non-termination. In other words, if a cycle exists in
the triggering graph, further analysis must be done before one can give a more definite
answer about termination. In this work we show how model checking can be used to
perform such analysis and give useful results about termination.

To illustrate our approach we use the SMV model checker1 [13]. The first step in-
volves converting the active database application to an SM V specification. The second
step is to express the termination property as a CTL (Computational Tree Logic) for-
mulae. The third step involves using the model checker to see if the property holds. The
model checker performs an exhaustive search and reports whether the property holds

1 The SMV model checker is available from http://www.cs.cmu.edu/afs/cs/project/
modck/pub/www/modck.html

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 266−279, 2001.
#� Springer-Verlag Berlin Heidelberg 2001



or not. If the property does not hold, the model checker provides a trace showing the
violation of the property. This trace is useful for understanding and debugging purposes.

We find that our method is able to (i) predict termination of rules that are also
predicted to terminate by the triggering graph approach; (ii) predict termination of rules
that do terminate, but are diagnosed as possibly non-terminating by the triggering graph
approach and (iii) predict non-termination for rules that are indeed non-terminating and,
additionally, provide a sequence of rule execution that leads to the non-termination.

The rest of the paper is organized as follows: Section 2 discusses some related work.
Section 3 gives an overview of our approach. Section 4 first presents an overview of
the SMV model checker and then illustrates our approach using a motivating example.
Section 5 presents a second example with terminating rule sets and the outcome of
analyzing this example with SMV. Section 6 concludes this paper.

2 Related Work

Widom et al. [2] propose a static, graph theoretic approach to detect if a set of active
database rules have properties, such as, termination, confluence and observable deter-
minism. This work involves building a triggering graph for an active database appli-
cation – the vertices correspond to the active rules of the application; edge � i � j � corre-
sponds to the possibility that the rule represented by vertex i can trigger the rule repre-
sented by vertex j. Cycles in the graph identify potential scenarios of non-termination.

Karadimce et al. [11] argue that a simple syntactic analysis may produce a graph
containing cycles whereas a more detailed analysis may produce an acyclic graph. If a
detailed analysis can show that a rule p can never trigger another rule q, then the edge

� p � q � can be safely removed from the graph. Removing edges in this manner may at
some stage yield an acyclic graph indicating that the rules do indeed terminate.

Baralis and Widom [6] introduced another kind of graph known as activation graph
to detect termination. The vertices corresponds to the rules of the application. An edge

� i � j � signifies that the action of rule i may satisfy the condition of rule j. Acyclicity
of this graph means definite termination. Baralis proposed a rule-reduction method [5]
that makes use of both activation and triggering graphs. Any vertex that does not have
an incoming activation or triggering edge is removed together with its outgoing edges.
If all the vertices are removed in the process, the rule set is indeed terminating.

Rule analysis focussing on the termination and confluence properties have also been
proposed by Van der Voort et al. [12]. The rule model used is very restrictive – rule
actions can only modify data selected by the rule condition, and it appears that insertions
and deletions are not allowed. Decidability results for the termination of rules has also
been given by Bailey et al. [4]. In a separate work Bailey et al. [3] show how collecting
semantic information can be useful in termination analysis.

3 Our Approach

Our approach is based on model checking. Model checkers require that the model being
verified is represented as a finite state machine. Since software systems, in general,

267Detecting Termination of Active Database Rules Using Symbolic Model Checking



are infinite state machines, model checkers cannot be used directly to verify software.
Recently researchers have shown how to build a finite state abstraction of the software
system and verify it using model checking [10, 19].

We build a finite state abstraction of an active database application and then verify
this abstraction using the symbolic model checker SMV. We use the input language
to the SMV to specify the finite state machine. The termination properties are repre-
sented as Computational Tree Logic (CTL) (a subset of branching time temporal logic)
formulae. The SMV model checker verifies the model by performing a search on the
state space and comes up with the appropriate response: either it prints that the property
holds or produces a counterexample illustrating the violation of the property.

We use two examples to describe our approach to rule termination analysis. The
rules in the first example trigger each other indefinitely and the termination property
does not hold. The result obtained in this case concurs with that obtained by applying
the triggering-graph analysis of Widom et al. [2]. Next we modify the example slightly
so that the rules do terminate. The corresponding triggering-graph has cycles indicating
the possibility that some rules may not terminate. Our automated analysis, however,
indicates that the rules do terminate.

3.1 Rule Execution Semantics

The modeling of the application in SMV is dependent on the rule execution semantics.
We assume that our active database system incorporates the following rule execution
semantics. Note that, our choice was arbitrary.

1. Sequential Execution: We assume a sequential mode of execution. That is, only one
input transaction or active rule is processed at a time.

2. Rule Processing Granularity: The rules are processed after each occurance of a
transaction. We assume that the transaction consists of a single database operation.

3. Conflict Resolution: If two or more rules are triggered at any time, the rule chosen
for activation depends on the priorities specified in the rule definition. The other
rules are queued up for later execution. If no priorities are specified, one rule is
chosen arbitrarily for activation.

4. Iterative Rule Processing: One rule is selected and processed at a time before se-
lecting and processing the other rule.

5. Set-Oriented Execution: We assume that a rule is executed once for all database
instances triggering the rule or satisfying the rules condition.

6. Coupling Mode is Dependent-Decoupled: The rule processing takes place only af-
ter the original transaction has committed.

3.2 A Note on Notation

The notations we use are as follows. We use the bold font to describe database variables,
sans serif font to describe the SMV variables, and italics to describe SMV keywords.

4 Modeling the Active Database Application

Before modeling the application, we briefly describe the SMV model checker [13].

268 I. Ray and I. Ray



4.1 The SMV Model Checker

The SMV program that is input to the model checker consists of four parts: (i) declara-
tions of state variables, (ii) the initial states of the variables, (iii) the transition relations
that change the state of the variables and (iv) the specification of the properties to be
verified. The syntax of each part is given below.

Declaration of State Variables: The variables used in an SMV specification must be
declared before use. The declaration also includes the type of the variable. A state
variable can be of the following types: boolean, scalar, and fixed arrays. In the
example below three variables x, y and z have been declared. The variable x is a
boolean variable, that is, it can take one of two values: 0 or 1. The variable, y, is of
type scalar, that is, it can take one of the three values A, B or C. The variable z can
take any value in the range 1 to 5.

x : boolean;
y : {A, B, C};
z : 1..5;

State Initialization: The SMV init function defines the initial values of the variables.
For example, suppose variable x is initialized to 0. This is specified in SMV as:

init(x) := 0;

State Transformation: The SMV next function defines how the next state values of
the variables are computed using the current state values of the variables. Often
a variable changes value depending on whether certain conditions are satisfied by
the current state variables. Moreover, the value may change in different ways if
different conditions are satisfied. These conditions can be specified using a case
statement. A case statement returns the first expression on the right hand side of
the colon (:), such that, the condition on the left hand side of the colon is true.
The default case is often specified as the last expression of the case statement: the
left hand side of the colon is a 1 and the right hand side is the default value. The
example below will help illustrate the point. The next state value of the variable y is
A if the current state values of x and z satisfy both the conditions x and (z = 1). The
next state value of y is B if y currently equals B and z equals 2. If neither of these
conditions are true, that is, in the default case, the value of y remains unchanged.

next(y) :=
case
x & (z = 1): A;
(y = B) & ( z = 2) : B;
1 : y;

esac;

Specifications of the Properties using CTL: The properties to be verified must be
specified as Computational Tree Logic (CTL) formulae. A CTL formula is a boolean
expression, an existential (E) path formula, an universal (A) path formula, or the
application of standard boolean operators to CTL formulae. A path formula is the

269Detecting Termination of Active Database Rules Using Symbolic Model Checking



application of the temporal operators next (X), eventually (F), or globally (G), to a
CTL formula. For example if we want to state that it is always true that if X is true
in a state, then in some future state Y will be true we specify it as follows:

AG(X -> EF(y))

4.2 Example Application with Non-Terminating Rules

The database application has a number of tables, user-defined transactions, and rules.
To keep the example short, we describe only those entities that are relevant for our
purpose. The two tables that are of interest are: emp(id,rank,salary) and bonus(emp-
id,amount). Table emp records each employee’s rank and salary, table bonus records
a bonus amount awarded to each employee.

The two transactions that we are interested in are: updateRank and updateAmt.
The transaction updateRank increases the rank of an employee and updateAmt in-
creases the bonus amount. To keep the example simple, we assume that an employee’s
rank is always increased by 1 and the bonus is always increased by 10.

We define two rules that trigger each other indefinitely. The first rule, bonusRank,
states that whenever an employee’s bonus is increased by 10, the employee’s rank is
increased by 1:

create rule bonusRank on bonus
when updated(amount)

then update emp
set rank = rank + 1

where id in (select emp-id from new-updated, old-updated
where new-updated.emp-id = old-updated.emp-id

and new-updated.amount - old-updated.amount = 10)

The second rule, rankBonus, states that whenever an employee’s rank is modified,
that employee’s bonus is increased by 10.

create rule rankBonus on emp
when updated(rank)

then update bonus
set amount = amount + 10

where emp-id in (select id from new-updated)

4.3 Converting the Database Application to an SMV Specification

A database application often has a very large number of states. To be efficiently exe-
cuted by the SMV model checker the number of states must be minimized. Thus, the
biggest challenge is in downsizing the application without changing its properties.

In this section we first give an algorithm for converting a database application to an
SMV specification. Then, we give some hints on how to reduce the state space.

Step 1: Creation of SMV State Variables

270 I. Ray and I. Ray



Step 1a: For each cell in each table of the database define two SMV variables.
One of these variables will contain the current state’s value of the cell and
the other will contain the previous state’s value. As a convention the previous
state variables contain the prefix ‘old’. Recall that each variable in SMV must be
specified with a range. For now, we assume that the range of this variable equals
the domain of the values that the corresponding attribute can take. Later on, we
specify how to reduce this range to minimize the state explosion problem.

State variables for the tables in the example: For each row i (where i = 1,2,3,
� � � ) in the table emp we define the variables id-i, rank-i, salary-i to store the
current state’s values of the respective cells, and the variables oldid-i, oldrank-
i, oldsalary-i to store the previous state’s values. We create similar variables
for the table bonus. Assuming that each table has just one row, the following
variables are created. id-1 , rank-1, salary-1, oldid-1 , oldrank-1, oldsalary-1,
empid-1, amount-1, oldempid-1, oldamount-1. For the sake of convenience we
elimiate the suffix -1 from the variables. The declaration of the variables and
their types using a pseudo SMV notation2 is:
id : 0..1000;
rank : 0..no upper limit;
salary : 0..no upper limit;
oldid : 0..1000;
oldrank : 0..no upper limit;
oldsalary : 0..no upper limit;
empid : 0..1000;
amount : 0..no upper limit;
oldempid : 0..1000;
oldamount : 0..no upper limit;

Step 1b: For each rule in the application, define a SMV boolean variable. The
value 1 of the variable indicates that the corresponding rule has been triggered.
The value 0 indicates that the corresponding rule has not been triggered.

State variables for the rules in the example: The motivating example has two
rules that generate the following state variables in SMV.
rankBonus : boolean;
bonusRank : boolean;

Step 1c: Define an SMV scalar variable active to indicate which rule is currently
active. Corresponding to each rule in the application there is an enumerator.
Depending on which rule is active, the variable active takes on the correspond-
ing value. There is also another enumerator, n, that is used to denote that no
rules are active in a particular state.

State variable to represent current active rule: For our example the variable
active can take the value bR (indicating that the rule bonusRank has been
chosen for activation), rB (indicating that the rule rankBonus has been chosen
for activation), or n (indicating that no rules have been chosen for activation).

2 In SMV we must specify a range with a lower and an upper limit

271Detecting Termination of Active Database Rules Using Symbolic Model Checking



active : {bR, rB, n};
Step 1d: Define an SMV scalar variable input to indicate which input transaction is

currently being processed. For each input transaction, there is a corresponding
enumerator. There is further an enumerator, n, that is used to denote that no
input transaction is currently being processed.

State variable to represent current active transaction: The motivating example
has two transactions updateRank and updateAmt. Thus the variable input
can take in any of the three values uR (indicating that the current transaction
being processed is updateRank), uA (indicating that the current transaction
being processed is updateAmt) and n (indicating that no input transaction is
currently being processed).
input : { uR, uA, n};

Step 2: State Initialization
Step 2a: For each SMV variable derived from the database table, specify the ap-

propriate initial values using the init statement. The initial values depend on
the application semantics and cannot be generalized.

Initializing state variables corresponding to the table: For our motivating ex-
ample, the initial values are as follows:
init(id) := 0;
init(rank) := 0;
init(salary) := 0;
init(oldid) := 0;
init(oldrank) := 0;
init(oldsalary) := 0;
init(empid) := 0;
init(amount):= 0;
init(oldempid) := 0;
init(oldamount) := 0;

Step 2b: The variables corresponding to the rules are initialized to 0. This is be-
cause initially no rules are triggered.

Initializing state variables corresponding to the rules: For our example this is
done as follows:
init(rankBonus) := 0;
init(bonusRank) := 0;

Step 2c: The variables active and input are each initialized to n – indicating that
none of the rules are active and no input transaction is being processed.

Initializing the variables active and input: For our example this is implemented
as follows:
init(active) := n;
init(input) := n;

Step 3: State Transformation
Step 3a: The SMV variables that contain previous state’s values are changed as

follows: the next state values of these variables equal the current values of the
corresponding variables.

272 I. Ray and I. Ray



State transformation of variables containing previous state values: For our
example this is
next(oldid) := id;
next(oldrank) := rank;
next(oldsalary) := salary;
next(oldempid) := empid;
next(oldamount) := amount;

Step 3b: The SMV variables containing current values are modified as per appli-
cation semantics. Typically, in a database application, there are transactions
and/or rules that update the corresponding cells in the table. A case statement
is used to model this. The number of expressions in the case statement is the
number of transactions and rules that update this cell plus one for the default
case.

State transformation of variables containing current state values: For our ex-
ample, rank and amount are the only variables that are changed by triggers or
transactions. Consider the state transformation of the variable rank given be-
low:
next(rank) :=
case
(input = uR) : rank + 1;
(active = bR) : rank + 1;
1 : rank;

esac;
The first expression in the case statement indicates that rank gets updated if the
current input transaction is updateRank. The second expression indicates that
rank gets updated if the current active rule is bonusRank. The last expression
is the default case – if none of the above two cases are true, then rank remains
unchanged.
Similarly, the variable amount’s state transformation is given by the following
SMV code:
next(amount):=
case
(input = uA) : amount + 10;
(active = rB) : amount + 10;
1 : amount;

esac;
Step 3c: The rule variables are set if the corresponding rules get triggered. Note

that, a rule gets triggered if some event has occured and some condition is
satisfied. The event can be either an insert, update or delete operation on a
table. The condition may depend on the value of some attributes. The state
variables representing the rules are modified in the following way. There is case
statement describing the different conditions in which the rule gets triggered.
The first expression contains the conjunction of the events and the conditions
that cause the rule to be triggered. The second expression says that if the rule
is triggered, but has not been processed, then the rule remains triggered. The

273Detecting Termination of Active Database Rules Using Symbolic Model Checking



third expression gives the default case which means the rule variable is set to
0; this indicates that the rule will not be triggered if the above conditions are
not satisfied.

State transformation of rule variables: For the rule rankBonus the SMV spec-
ifications is:
next(rankBonus) :=
case
!(rank = oldrank) : 1;
(rankBonus = 1) & !(active = rB) : 1;
1 : 0;

esac;

The first expression says that the rule rankBonus is triggered if the value of
rank changes. The second expression says that if rankBonus was triggered but
not activated, it will be activated in the next state. Finally, the default case says
that if none of the above conditions is true then the rule is not triggered.
Similarly the SMV specification for the rule bonusRank is:
next(bonusRank) :=
case
!(amount = oldamount) : 1;
(bonusRank = 1) & !(active = bR) : 1;
1 : 0;

esac;

Step 3d: A case statement is used to specify how the value of active changes. For
each rule variable there are two expressions. The first expression indicates that
if a rule variable is true but the rule has not been activated, then active gets the
value of that rule. The second expression says that if the event and the condition
of a rule are both satisfied, the rule must be activated.
Note the order in which the expressions corresponding to the different rule
variables are specified in the case statement, determine the priority of rule ex-
ecution. This is because of the property that if the conditions for multiple ex-
pressions in a case statement are satisfied, only the first expression is executed.

State transformation of variable active: The first expression in the case state-
ment says that if the current active trigger is not bonusRank but it is queued
up for activation, then in the next state it will become active. The second ex-
pression makes a similar argument about the trigger rankBonus. The third
expression says that if the amount has been changed then in the next the rule
bonusRank will be activated. The fourth expression says that if the rank has
been updated, then the rule rankBonus will be activated. If none of the above
conditions are true, then no rule will be activated in the next state.
next(active) :=
case
!(active = bR) & (bonusRank = 1) : bR;

274 I. Ray and I. Ray



!(active = rB) & (rankBonus = 1) : rB;
!(amount = oldamt) : bR;
!(rank = oldrank) : rB;
1 : n;

esac;
Step 3e: The variable input determines which transaction is being processed. We

assume that once an input transaction is being processed or there is a trigger
activated, no other new transaction is accepted because the processing is not yet
complete. Otherwise the input can take any value from its possible enumerators.
The value that input takes in this case is specified non-deterministically.

State transformation of variable input: For our example, the SMV specification
is:
next(input) :=
case

!(input = n) : n;
!(active = n) : n;
(input = n) & (active = n) : {uR, uA, n};

esac;

Converting Database Application to a Verifiable SMV Specification The SMV
model checker checks all possible states for the satisfaction of the property. Hence,
to avoid the state explosion problem it is required that the number of states be kept to a
minimum level. In this section we discuss some optimizations to reduce the number of
states. But before we talk about optimization, we need to elaborate on some details left
out earlier.

Specify Upper Limits: In some applications no upper bound is specified for an at-
tribute. However, in the SMV specification both the upper and the lower bound
must be specified for a particular variable. To simulate the case of a variable not
having an upper bound, we use the modulo operation and wrap around when the
variable reaches the upper limit.

Specifying upper limits for the example: In our example application no upper limit
has been specified for the rank attribute. However, the corresponding SMV variable
is specified with an upper bound shown below.

rank : 0..4;

Consider the state transformation of the variable rank as discussed in Step 3b.

next(rank) :=
case
(input = uR) : rank + 1;
(active = bR) : rank + 1;
1 : rank;
esac;

275Detecting Termination of Active Database Rules Using Symbolic Model Checking



With the above example, the rank will soon reach an upper bound. To avoid this
scenario, we use the modulo operation shown below:

next(rank) :=
case
(input = uR) : (rank + 1) mod 5;
(active = bR) : (rank + 1) mod 5;
1 : rank;
esac;

Note that the modeling above does not distinguish between ranks 1, 6, 11 etc. So
if the actual value of the rank is important for some application then some extra
measures must be taken. For example, suppose the application requires that if the
rank is 1 then an employee gets an extra bonus. To model this we need to introduce
another variable rankIsOne which equals 1, if the rank is one, and 0 otherwise.

Eliminate Redundant Variables: In Step 1 we mentioned that for each field we create
two variables. Now some of the fields are never changed in an application and they
are not important with respect to the property being verified. Such variables can be
safely eliminated from the specification. For instance, in the motivating example,
the variables id, empid, salary, are never used in the specification. So these can
safely be eliminated. Some fields in a table are never updated. For these fields we
do not require a variable to store the previous state values. For example, id, empid
never get updated – so we can do without the variables oldid, oldempid.

Reduce the Range of Variables: Sometimes a variable can take a wide range of val-
ues. For example, the salary of an employee can take any value in the range 0 to
200000. However, specifying salary as an integer with the above range will lead to
a state explosion problem.
One solution is to just list a few possible values that the salary can take as in

salary : {40000, 45000, 50000, 55000, 60000}

This solution is fine for applications in which the range is 40000 to 60000 and
increments occur in 5000. However, if the application requires that an increment of
1000 be given to an employee then this cannot be modeled if we specify the salary
as above.
A second solution may be to just scale down the salary:

salary : 0..20

This solution assumes that the unit is in thousands. If this solution is used, then care
must be taken to divide all the usage of salary figures by 1000. This solution is used
to scale down the value of amount variable in our motivating example. Note that
other solutions may also be possible. The solution which must be used depends on
the application.

4.4 Specifying Non-termination Properties using Computational Tree Logic

Once we have built the finite model, the next step is to specify the non-termination
property using Computational Tree Logic (CTL) formulae. To show non-termination,

276 I. Ray and I. Ray



we have to show that in the absence of input transactions, the triggers will all be reset,
that is, no trigger will be active.

The CTL formula for the termination property is as follows:

SPEC AG((input = n) -> AF((active = n)))

The above CTL formula states that it is always the case that in the absence of any
input transactions, eventually none of the triggers are active. Note that all properties
stated in CTL begin with the word SPEC. The formula AG(f) means that f holds in
every state along every path. The formula AF(f) means that along every path there
exists some future state in which f holds.

The output of the model checker indicate that the CTL formulae are false; that is
the rules do not terminate. The model checker also provides the scenario under which
the rules do not terminate. The detailed specifications is given in [14].

5 Example with Terminating Rules

To illustrate the advantage of our approach over [2], we create a second example by
slightly modifying the rule rankBonus of the example in Section 4.2. The modified
rule, which we call rankBonus2, is given below. As before the rankBonus2 trigger is
set when rank is updated. However, this trigger updates the amount for the employee
whose rank is less than 3.

create rule rankBonus2 on emp
when updated(rank)

then update bonus
set amount = amount + 10

where emp-id in (select id from new-updated
and new-updated.rank � 3)

The finite state model for this application is developed in the same manner as in the
previous example. The model is very similar except that we introduce a boolean state
variable rankLessThan3. The value of rankLessThan3 equals 1 when rank is less than 3
and 0 otherwise. Initially rankLessThan3 is 1. Whenever the current rank is greater than
or equal to 2 and the current input transaction is updateRank or the current active trig-
ger is bonusRank, rankLessThan3 is set to 0. Otherwise, the value of rankLessThan3
is not changed.

The SMV specification for the state initialization and state transformation of rank-
LessThan3 are given below:

init(rankLessThan3) := 1;
next(rankLessThan3) :=
case
(input = uR) & (rank >= 2) : 0;
(active = bR) & (rank >= 2) : 0 ;
1 : rankLessThan3 ;

esac;

277Detecting Termination of Active Database Rules Using Symbolic Model Checking



The rankBonus2 trigger is set when rank is updated. This trigger updates the amount
for the employee whose rankLessThan3 is true. The SMV specification for the state ini-
tialization and state transformation of rankBonus2 is identical to that of rankBonus of
the previous example. This is expected because the event and the condition part of the
triggers are the same. The action parts of the two triggers are different and this is re-
flected in the state transformation of variable amount.

init(amount) := 0;
next(amount) :=
case

(input = uA) : (amount + 1) mod 5;
(active = rB) & rankLessThan3 : (amount + 1) mod 5;
1 : amount;

esac;

The CTL formulae remains the same:

SPEC AG((input = n) -> AF((active = n)))

For this particular example, the rules bonusRank and rankBonus2 are terminating.
The triggering graph analysis technique [2] detects a cycle signifying a potential source
of non-termination. However, when we execute the SMV program corresponding to this
example, the CTL formulae return true indicating that the triggers do indeed terminate.

-- specification AG (input = n -> AF active = n) is true

6 Conclusion

Our contribution is that we show how termination of active database rules can be
formally verified by the database programmer using an easy-to-use symbolic model
checker. The formal analysis provides assurance that the resulting system indeed pos-
sesses the termination property. Using a very simple example, we illustrate that our ap-
proach can detect termination for a case where the triggering graph approach of Aiken
et al. [2] fails.

The major difficulty is in developing an accurate finite state model of the active
database application. The modeling should be such that the property being verified
should not be altered in the process of developing the finite state abstraction. In this
paper we illustrate manually how the model can be developed. A future work remains
how some automated verification methodology can be used to create a model that can
be automatically checked by the model-checker.

References

1. R. Agrawal and N. Gehani. Ode (Object Database and Environment): The Language and the
Data Model. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 36–45, Portland, OR, May 1989.

278 I. Ray and I. Ray



2. A. Aiken, J. M. Hellerstein, and J. Widom. Static Analysis Techniques for Predicting the
Behavior of Active Database Rules. ACM Transactions on Database Systems, 20(1):3–41,
March 1995.

3. J. Bailey, L. Crnogorac, K. Ramamohanarao, and H. Søndergaard. Abstract Interpretation of
Active Rules and its use in Termination Analysis. In Proceedings of the 6th International
Conference on Database Theory, pages 188–202, Delphi, Greece, January 1997.

4. J. Bailey, G. Dong, and K. Ramamohanarao. Decidability and Undecidability Results for the
Termination Problem of Active Database Rules . In Proceedings of the 17th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 264–273, Seattle,
Washington, June 1998.

5. E. Baralis, S. Ceri, and S. Parboschi. Improved Rule Analysis by means of Triggering and
Activation Graphs. In T. Sellis, editor, Rules in Database Systems, volume 985 of Lecture
Notes in Computer Science, pages 165–181. Springer-Verlag, 1995.

6. E. Baralis and J. Widom. An Algebraic Approach to Rule Analysis in Expert Database
Systems. In Proceedings of the 20th International Conference on Very Large Data Bases,
pages 475–486, Santiago, Chile, September 1994.

7. K. P. Eswaran. Specification, Implementations and Interactions of a Trigger Subsystem in
an Integrated Database System. Technical Report IBM Research Report RJ 1820, IBM San
Jose Research Laboratory, August 1976.

8. N. Gehani and H. V. Jagadish. Ode as an Active Database: Constraints and Triggers. In
Proceedings of the 17th International Conference on Very Large Databases, pages 327–336,
Barcelona, Spain, September 1991.

9. L. M. Haas et al. Starburst Mid-flight: As the Dust Clears. IEEE Transactions on Knowledge
and Data Engineering, 2(1):143–160, March 1990.

10. D. Jackson. Niptick: A Checkable Specification Language. In Proceedings of the Workshop
on Formal Methods in Software Practice, San Diego, CA, January 1996.

11. A. P. Karadimce and S. D. Urban. Refined Triggering Graphs: A Logic-Based Approach to
Termination Analysis in an Active Object-Oriented Database. In Proceedings of the 12th
International Conference on Data Engineering, pages 384–391, New Orleans, LA, February
1996.

12. L. van der Voort and A. Siebes. Termination and Confluence of Rule Execution. In Pro-
ceedings of the 2nd International Conference on Information and Knowledge Management,
pages 245–255, Washington, DC, November 1993.

13. K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1992.

14. I. Ray and I. Ray. Detecting Termination of Active Database Rules Using Symbol Model
Checking. Technical Report CIS-TR-005-2001, Computer and Information Science Dept.,
University of Michigan-Dearborn, May 2001. Available from http://www.engin.umd.
umich.edu/˜iray/research/index.html/.

15. E. Simon and A. Kotz-Dittrich. Promises and Realities of Active Database Systems. In
Proceedings of the 21st International Conference on Very Large Databases, pages 642–653,
Zürich, Switzerland, September 1995.

16. M. Stonebraker, L. A. Rowe, and M. Hirohama. The Implementation of POSTGRES. IEEE
Transaction on Knowledge and Data Engineering, 2(1):125–142, March 1990.

17. J. Widom and S. Ceri. Active Database Systems. Triggers and Rules for Advanced database
Processing. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.

18. J. Widom, R. Cochrane, and B. Lindsay. Implementing Set-Oriented Production Rules as an
Extension to Starburst. In Proceedings of the 17th International Conference on Very Large
Databases, Barcelona, Spain, September 1991.

19. J. M. Wing and M. Vazari-Farahani. A Case Study in Model Checking Software Systems.
Science of Computer Programming, 28:273–299, 1997.

279Detecting Termination of Active Database Rules Using Symbolic Model Checking



A Data Model for Flexible Querying

Jaroslav Pokorný1 and Peter Vojtáš2

1 Department of Software Engineering, Faculty of Mathematics and Physics
Charles University Prague

Malostranské nám. 25, 100 00 Praha 1, Czech Republic
fax (+420 2) 21914323, phone (+420 2) 21914265

pokorny@ksi.ms.mff.cuni.cz
2 Department of Computer Science, Faculty of Science

P.J. Šafárik University Košice
á 5, 041 54 Košice, Slovakia

fax (+421 95) 62 221 24, phone (+421 95) 62 209 49
vojtas@kosice.upjs.sk

Abstract. The paper is dealing with the problem of flexible querying
using vague linguistic expressions and user dependent requirements. We
propose a solution based on incorporating weights into scoring rules by
the usage of fuzzy logic and fuzzy similarities. We define a data model,
which enables to answer queries over crisp data using fuzzy knowledge
base, fuzzy interpretation of vague expressions and fuzzy similarities. We
present an extension of a positive relational algebra and show that its
the expressive power together with a fuzzy fixpoint operator is sufficient
for evaluating fuzzy Datalog programs. We discuss also a computational
model for queries with a threshold on truth values and optimization of
such queries.

Keywords: flexible querying, vague linguistic expressions, fuzzy Dat-
alog, fuzzy similarities, fuzzy relational algebra, threshold computation

1 Introduction

The information to be stored in databases in not always precise. A related issue
is the handling of imperfect or flexible queries. Fuzzy sets and possibility theories
are often used in this context. For databases, it usually means to apply fuzzy
set-based approach in information management.

In ([BP97] the term fuzzy databases is presented in four different meanings.
Here we combine a logical approach to databases, i.e. we use logical rules in
many-valued-logic, with fuzzy similarity defined on attribute domains. We deal
with vagueness and gradual properties of objects represented by classical (crisp)
data. The aim of this paper is to build a data model to answer queries over crisp
data using fuzzy knowledge base, fuzzy interpretation of vague expressions, and
fuzzy similarities over respective domains. We have developed a fuzzy variant of
Datalog whose procedural semantics is described via operations of a fuzzy rela-
tional algebra and a fuzzy fixpoint operator. The approach uses also a threshold

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 280–293, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Data Model for Flexible Querying 281

computation. This feature has practical consequences for practice. We attempt
to prove basic results on expressive power of this approach. Concerning a pos-
sible implementation, we use relations to store basic facts. Their truth-values
can be represented, e.g., as additional columns in relational tables. The rest of a
fuzzy knowledge base is represented intentionally. Hence, an implementation of
this approach can be built on top of an RDBMS or deductive system with, e.g.,
the Datalog language. In Sect. 2 we show a motivating example for our research.
In Sect. 3 we present a language for the data model. Section 4 is devoted to the
definition of the fuzzy relational algebra with similarity. In Sect. 5 we briefly
discuss fixpoint theory and the expressive power of our algebra. Section 6 intro-
duces the threshold variant of the fuzzy relational algebra. The paper is closed
by a discussion and conclusions in Sect. 7.

2 Motivating Example

A motivating example is inspired by a hotel reservation system of Naito et all
([Na+95]), where they described a system with logical connectives (aggregation
operators) learned by a neural network for each customers preferences separately.

The illustrating example concerns a resort of High Tatras in Slovakia. We
suppose the following query:

Q1. Find hotels that are near to Hágy, their cost is reasonable and their
building is fine. The costs are considered to January 10th.

In order to process this query we need to specify a user’s notions of being
near to, cost reasonable, and building is fine.

We suppose database relations Hotel location and Distance. Moreover, the
function

user’s close(x) = max
(

0, 1 − x

50

)

is at disposal. For example user’s close(10) = 0.8 and our system interprets the
value as a truth value. For simplicity, we can imagine the representation of this
function as a relation. Tuples in crisp relations have truth value 1. The notion
of Near to can be specified on the intentional level e.g. as an SQL view.

CREATE VIEW Near to AS
SELECT Hotel, Business location, TruthV
FROM Hotel location NATURAL JOIN Distance

NATURAL JOIN User’s close
The join calculates a single truth-value for the whole tuple, and Near to is

here a classical projection. Later we will see that the projection can be influenced
by a confidence factor, because there can be more ways how to calculate nearness.

Hotel location

Hotel Location
Szállás Štrba

Distance

Location Business location Dist
Štrba Hágy 10

User’s close

Dist TruthV
10 0.8



282 J. Pokorný and P. Vojtáš

Hotel location � Distance � User’s close

Hotel Location Business location Dist TruthV
Szállás Štrba Hágy 10 0.8

Near to

Hotel Business location TruthV
Szállás Hágy 0.8

Similar situation is for evaluating reasonability of the hotel costs. Having the
user’s notion for ”being reasonable”

user’s reasonable(x) =
{

max(0, x
1000 ) if x ≤ 1000

max(0, 1 − x−1000
2000 ) if x ≥ 1000

we could define the notion of cost reasonable in a similar way. The same holds
for ”building is fine”. Now we would like to illustrate another feature of our
system, namely similarity on domains. It can quite well happen that the name
of the hotel in the Location database above was found in a Hungarian database
but the information about the price can be in the database of a Polish operator
(with a little bit different spelling).

Hotel price

Hotel Time Price
Szalas Jan10 1600

User’s reasonable

Price TruthV
1600 0.7

Hotel price � User’s reasonable

Hotel Time Price TruthV
Szalas Jan10 1600 0.7

Cost reasonable

Hotel Time TruthV
Szalas Jan10 0.7

Last but not least, looking for a quality of the building we use the user’s
notion for ”being new”

user’s new(x) = max
(

0, 1 − 2001 − x

20

)
This information can be in a Slovak provider database with another spelling of
the hotel name again:

Buildings

Hotel Year of constr
Salaš 1993

User’s new

Year of constr TruthV
1993 0.6

Buildings � User’s new

Hotel Year of constr TruthV
Salaš 1993 0.6

Building is fine

Hotel TruthV
Salaš 0.6

A classical join, with the joining attribute Hotel, of the virtual relations for
Near to, Cost reasonable and Building is fine would give an empty answer.

Near to

Hotel Business location TruthV
Szállás Hágy 0.8

Cost reasonable

Hotel Time TruthV
Szalas Jan10 0.7

Building is fine

Hotel TruthV
Salaš 0.6



A Data Model for Flexible Querying 283

Here is the point where we enter our fuzzy similarity. Its specification can be
expressed by the following table:

Similarity Salaš Szállás Szalas
Salaš 1 0.6 0.7

Szállás 0.6 1 0.8
Szalas 0.7 0.8 1

Notice that dealing with the similarity in this way is not usual in classical
databases. We can meet it rather in text databases or in special software, i.e. in
OLAP databases or in data mining systems. Often so-called distance functions
are used (e.g. Hemming distance, Levenstein distance, etc.) [BR99]. Most of fuzzy
approaches solve the situation by a set-theoretic approach. They consider sets
of attribute values (as subsets of respective domains), calculate their similarity
degree (mainly wrt max/min operators). Consequently, the answer to the query
is a set.

Our approach is based on a logical approach. We assume that our knowledge
base is extended by axioms of equality and a similarity value is a product factor
influencing the final answer. The product is chosen because we think that it is
independent of the fact in the database whether or not there are problems in
the spelling of hotel names.

Although mathematical details will be described later, we can imagine a
Datalog closure of above relations wrt to fuzzy equality axioms yielding the
following relations:

Near to1

Hotel Business location TruthV
Salaš Hágy .8*.6=.5

Szállás Hágy .8
Szalas Hágy .8*.8=.6

Cost reasonable1

Hotel Time TruthV
Salaš Jan10 .7*.7=.5

Szállás Jan10 .7*.8=.6
Szalas Jan10 .7

Building is fine1

Hotel TruthV
Salaš .6

Szállás .6*.6=.4
Szalas .6*.7=.4

The join of these tables in our systems is almost the classical join for all but
one attribute, namely for truth value attribute.

Near to �@ Cost reasonable �@ Building is fine

Hotel Time Business location Aggregated TruthVs
Salaš Jan10 Hágy @(.5, .5, .6) = .5

Szállás Jan10 Hágy @(.8, .6, .4) = .7
Szalas Jan10 Hágy @(.6, .7, .4) = .6

Query 1

Hotel TruthV
Salaš .5*.8=.4

Szállás .7*.8=.5
Szalas .6*.8=.5

Truth value of a tuple in the joined table is calculated wrt an aggregation
operator @·. Neither conjunction nor disjunction is appropriate to calculate this
truth value. The reason is that the user’s intention is that the hotel is better if it
fulfils more conditions, but not necessarily all. So the conjunction would be very
restrictive (and we would get possibly no answers) and disjunction would be very
loose (and we would get too many answers). Here we use @·(x, y, z) = 3x+2y+z

6



284 J. Pokorný and P. Vojtáš

which gives the highest preference to distance and price and building quality
are less significant (note that truth values are calculated and rounded to first
decimal point).

So, to be more precise, we describe the knowledge base using Datalog/logic
programming notation in a many-valued logic. The many-valued logical con-
nectives are &·

G(x, y) = min(x, y) and →·
P (x, y) = min(1, y

x ) (here G stands
for Goedel and P stands for Product from Goedel logic and product logic, re-
spectively). The knowledge base is conceived as a set of rules. Our example is
expressed by rules in Fig. 1. Note the first rule is considered as a root rule for
the query Q1. It is equipped with a truth-value. So the answer to the query
will be not a simple projection to attribute Hotel but confidence factors will be
multiplied by factor 0.8. This is because there can be more rules for a user which
can have different truth values.

query 1(Business location, Time, Hotel)←−P

@(near to(Business location, Hotel),
cost reasonable(Hotel, Time),
building is fine(Hotel)). with truth value = 0.8

near to(Business location, Hotel)←−P

hotel location(Hotel, Location)&G

distance(Location, Business location, Distance)&G

user’s close(Distance). with truth value = 1
cost reasonable(Hotel, Time)←−P

hotel price(Hotel, Time, Price)&G

user’s reasonable(Price). with truth value = 1
building is fine(Hotel)←−P

buildings(Hotel, Year of construction)&G

user’s new( Year of construction). with truth value = 1

Fig. 1. An example of a knowledge base

To close this introductory motivation, let us stress that our system calculates
answers with truth values. This is first advantage of this many-valued approach,
that the higher truth value indicates better fulfilment of the query (higher rel-
evance of answer). Of course this is the goal of all fuzzy database and/or fuzzy
query systems.

Our approach enables also threshold computations. Depending on the size of
our database we can get a huge number of answers with truth value 0 (e.g. hotels
more than 50km away, more expensive than 3000Sk or built more than 20 years
ago. Hence we should think about to get answers as an initial segment of hotels
with highest truth value. We will see later that it is difficult to describe a data
model for getting the best answer or top k answers (because when processing the
query the best answer is not necessary best along the whole way of computation,
and depending on the order of evaluation it can be very low at the beginning). In
this paper we concentrate on queries with thresholds. In fact, truth values have
comparative character, so sometimes the best answer can have its truth value



A Data Model for Flexible Querying 285

say 0.4, which does not mean it is bad, it means only that the system before
finding it had to use several rules or, e.g., that there are simply no cheap hotels
built in the year 2000 at distance 0.

Concerning similarity relations, these are specific for attribute domains. We
considered different spelling here. There are several other sources of similarity, we
do not discuss them here, see e.g. [Pe96], [Kr+98] and already mentioned distance
functions. In our contribution we will assume the theory of fuzzy equality holds
and all similarities are coupled with predicates by product conjunction.

Our standard reference for a database theory is [Ul89]. Flexible querying over
crisp data using fuzzy techniques is considered also in [Pe96] using the minimum
connective.

3 The Data Model – Language

Following [Ul89] a data model is a mathematical formalism with two parts:
1) a notation for describing data, and
2) a set of operations used to manipulate that data.

The former (both model-theoretically and proof-theoretically) will be de-
scribed by fuzzy logic (see e.g. Hajek’s book [Ha99], and for fuzzy logic program-
ming [Vo98]). The latter will be presented here by new product/join, selection,
union, and projection operators. Where in the two-valued case is equivalence
(implications and clauses), the same variable denotes always the same value and
equality means identity. In the many-valued case we have to be careful and to
choose the right definition and to show it works. Nevertheless there will be a lot
of analogy with the two valued case.

Language. Our language L has two types of syntactical objects: logical and
quantitative. The former consists of a many-sorted predicate language without
function symbols (we identify here sorts for variables and attributes). The latter
consists of some/all rational numbers from the unit interval [0, 1] ∩ Q. Here Q
denotes the set of rational numbers.

The set of all attributes is denoted by A. For each sort of variable (attribute)
A ∈ A there is the set CA of constant symbols of this sort (these are names
of elements of domain of A). A predicate r(A1, ..., An) is defined by its pair-
wise different sorts of variables (attributes). For each attribute A and predicate
r there is in our language at most one similarity relation =r

A interpreted as a
fuzzy equivalence sr

A on the domain CA.
To capture different interdependences between predicates our language can

have several many valued conjunctions, disjunctions, implications and aggrega-
tions. A truth function for a conjunction & is a conjunctor &· : [0, 1]2 −→ [0, 1]
and for disjunction ∨ a disjunctor ∨· : [0, 1]2 −→ [0, 1] which are assumed
to extend the respective two valued connectives and are monotone in both
coordinates. Since no associativity, symmetry or boundary conditions are as-
sumed, this enables us to work with approximations of connectives and/or with
connectives learned from data. Truth function for an n-ary aggregation @ is
an aggregation operator @· : [0, 1]n −→ [0, 1] which fulfils @·(1, 1, ..., 1) = 1



286 J. Pokorný and P. Vojtáš

and @·(0, 0, ..., 0) = 0. A truth function for an implication → is an implica-
tor →·: [0, 1]2 −→ [0, 1] which is non-increasing in the first (body) coordinate
and non-decreasing in the second (head) coordinate and extends the two valued
implication.

The logical part of our language includes classical formulas of the predicate
calculus build from atoms using connectives (preserving their arity) and quanti-
fiers.

The main syntactical objects of our language are gradedformulas (φ.β)
(sometimes written (φ. with truth value = β)), where φ is a formula and β
is a rational number from [0, 1] ∩ Q. Schematically

Graded formulas ⊆ Formulas × [0, 1] ∩ Q

Structures. We base our semantics on Herbrand interpretations. A predicate
(relational schema) r(A1, ..., An) is interpreted as a fuzzy relation R : CA1 × ...×
CAn −→ [0, 1]. The fact that a tuple (c1, ..., cn) is in R with truth value γ will be
often denoted as a (crisp) tuple (c1, ..., cn, γ) with an additional attribute called
”truth value of R” (abbreviated TruthVR).

The Herbrand base BL for language L consists of all ground atoms (i.e.
atoms without variables, only with constants). We can represent interpretations
as mappings f : BL −→ [0, 1] from Herbrand base into real numbers.

Rules. Body B is a formula built from atoms and connectives &, ∨, and
@. Note all these connectives have monotone truth functions (we do not have
negation here), hence their composition and hence also the aggregate operator
are monotone.

That is why a body can be in general described as @(B1, ..., Bn), where Bi

are atoms of B. This covers all types of bodies, including the classical ones.
Heads H and (database) facts F are atoms. We express logical part of rules

in Datalog-like notation as H ← B. Note that it is an implication and not a
Horn clause!

A fuzzy Datalog rule is a graded formula (graded implication) (H ← B.ρ)
and a fuzzy Datalog fact is a graded atom (A.α).

Fuzzy Knowledge Base. A fuzzy Datalog program is a finite set {(Hj ←j

Bj .ρj) : j ∈ J} ∪ {(Ak.αk) : k ∈ K} of fuzzy Datalog rules and facts with
the additional requirement, that there are no two rules and/or facts which have
syntactically identical logical parts and different quantitative part. We stress
that syntactical identity is used here. There can be different rules with different
truth values where the logical part are different variants of same formula (e.g.
differing in constants). That is we can represent a fuzzy Datalog program as a
partial syntactical mapping

P : Logical Rules ∪ Atoms −→ [0, 1] ∩ Q.

The idea behind this is, that a fuzzy Datalog program is a set of requirements
on truth values formulas from the logical part in models, and hence the biggest
requirement is the only which counts.

An interpretation f : BL −→ [0, 1] can be extended to all formulas calculat-
ing truth value of formulas along their complexity from truth values of atoms



A Data Model for Flexible Querying 287

and truth functions of connectives. An interpretation f is a model of P if for all
formulas ϕ we have f(ϕ) ≥ P (ϕ)..

The theory of fuzzy logic programming for propositional logic was developed
in [Vo98] and the procedural semantics was based on backward usage of modus
ponens

(B.β), (H ←−i B.ρ)
(H.Ci(β, ρ))

,

where Ci is a conjunctor residual to implicator ←−i (see [Ha99] and [Vo98]).
Residual conjunctor correctly and completely evaluates this deduction rule wrt
the satisfaction in structures of our fuzzy logic. Namely in an interpretation f
the body B has truth value at least β and the implication H ←−i B has truth
value at least ρ, then the truth value of H is at least Ci(β, ρ) and this is the
best possible promise (in the sense of extensionality of our fuzzy logic which
calculates truth values of formulas along their complexity).

In the classical Datalog we work with rectified rules in order the rule evalu-
ation is a projection of body of rules with all term equalities from the head. A
rule with head H(a1, ..., ah), where ai’s are either constants or variables, will be
rewritten as H(X1, ..., Xh) ←− X1 = a1 &G ... &G Xh = ah &G @(B1, ..., Bn)
with apropriate truth value. A generalization to more rules with the same head
predicate is straightforward (see, e.g., [Ul89]).

Queries with Threshold. To keep the size of answers under control, we
need thresholds for queries. The query processing with threshold t changes for
different subtasks during the query evaluation as follows:

Using modus ponens, the head of the rule has the truth value Ci(β, ρ) ≥ t
if the truth value of the body β ≥ inf{z : Ci(z, ρ) ≥ t} = t0. If this infimum
exists, we continue with threshold t0, if it does not exist we cut this branch of
computation.

In the definition of fuzzy relational algebra we show how the evaluation of
@(B1, ..., Bn) with threshold t0 can be handled by assuming the threshold is a
sharp threshold.

Evaluating Rules. So our task now is to describe operations of fuzzy rela-
tional algebra, such that having the above rule and having relations R1, ..., Rn

currently evaluating predicates B1, ..., Bn, these operations yield a relation S
evaluating predicate H. A tuple (c1, ..., ch, γ) is in S if there are tuples
(bi

1, ..., b
i
mi

, βi) in Bi such that when substituting tuples to respective variables
then the truth value of the whole implication is at least ρ.

Similarities. We would like to emphasize, that we assume that axioms of
equational theory of predicate calculus hold true and in calculation of the truth
value of the rule all occurrences of equality are contributing to the final truth
value. We can solve this problem by extending our fuzzy knowledge base (fuzzy
Datalog program) by rules describing equational theory and properties of fuzzy
equivalence. We mention the transitivity X =r

A Y ←− X =r
A Z &P Z =r

A

Y and the equality axiom r(X1, ..., Xn) ←− X1 =r
1 Y1 &P ... &P Xn =r

n

Yn &P r(Y1, ..., Yn) here =r
1, . . . ,=

r
n are names for fuzzy similarities and are

coupled by &P .



288 J. Pokorný and P. Vojtáš

4 The Data Model – Fuzzy Relational Algebra

Our goal is to describe semantics of rules (without negation) by expression in a
positive fuzzy relational algebra. In this section we present such an algebra as
an extension of the classical positive relational algebra. Our algebra consists of
selection, similarity closure, natural join, projection and union. All operations
except of similarity closure are extensions of the classical relational algebra.

Selection. As already mentioned our relations have an extra attribute for
truth value and expressions used in selections are allowed to use TruthV ≥ t,
e.g. σTruthV ≥t(r). The result of such selection consists of those tuples from R
which have the value of the truth value attribute at least t. This is the only
extension of classical selection.

Similarity Closure. The operation which closes the relation wrt a similarity
acting on a domain of an attribute is a new operation defined as follows

(b1, a2, . . . , an, β ∗ sr
A(b1, a1)) ∈ SYMsr

A,A(R)

provided A is the first attribute and (a1, a2, . . . , an, β) ∈ R. Note that one step
closure suffices if similarities fulfil the transitivity condition. So if an relation R
is an evaluation of the predicate r, then provided equational theory of predicate
calculus holds SYMs,A(R) is an evaluation of r wrt to this theory.

Join. The operation of a natural join is in our relational algebra defined
wrt to crisp equality and an aggregation operator which tells us how to cal-
culate the truth value degree of a tuple in the join. Assume we have relations
R1, ..., Rn which evaluate predicates r1, ..., rn. Moreover assume that first k-
attributes in each Ri are same and (b1, . . . , bk, bi

k+1, . . . , b
i
mi

, βi) ∈ Ri then
(b1, . . . , bk, b1

k+1, . . . , b
1
m1

, . . . , bn
k+1, . . . , b

n
mn

, @·(β1, . . . , βn)) is in the relation �@
(R1, ..., Rn), that is the truth value attributes in our join do not behave as in
classical join, they disappear, forwarding the respective truth values to the new
aggregated truth value

Theorem 1. The operation �@ (R1, ..., Rn) is a sound and complete (wrt the
satisfaction of fuzzy logic) evaluation of @(r1, ..., rn) provided R1, ..., Rn were
evaluations of r1, ..., rn.

Projection. Having the evaluation R of the whole body of the rectified rule
we have to use an analogy of the projection to get the evaluation of the (IDB)
predicate H(X1, ..., Xh), The only difference to the two-valued case is that the
truth values of tuples will change with respect to the many-valued modus ponens.
So for (b1, ..., bm, β) ∈ R the projection consists of tuples

(b1, ..., bh, Ci(β, ρ)) ∈ Π
Ci( ,ρ)
X1,...,Xh

(R)

assuming the variables selected where at the beginning of the enumeration of
the tuple.

Note that similarity closure is practically projection wrt the equality rule
(with the product implication and ρ = 1), but we consider it separately because
of different procedural usage.



A Data Model for Flexible Querying 289

Union. For the case there are more rules with the same predicate in the head
we have to guarantee that different witnesses to the same conclusion are not
lost. In the case of different rules it means that these witnesses are aggregating
together with the maximum operator (the maximal deduced value counts). Hence
they unify wrt the union which calculates the maximal truth value. Assume
R1, . . . , Rn are relations with same attributes and (b1, . . . , bk, βi) ∈ Ri then

(b1, . . . , bk, max(β1, . . . , βn)) ∈
n⋃

i=1

Ri.

Theorem 2. The operation

k⋃
j=1

Π
Cj( ,ρ)
X1,...,Xh

(σXh=aj
h

(
...σX1=aj

1

(
�@ (Rj

1, ..., R
j
nj

)
)

...
)
)

is a sound and complete evaluation of the H(X1, ..., Xh) (wrt the satisfaction of
fuzzy logic) wrt rules ranging from j = 1 to k

H(X1, ..., Xh) ←−j X1 = aj
1&G...&GXh = aj

h&G@(Bj
1, ..., B

j
nj

).T ruthV = ρj

provided Rj
1, ..., R

j
nj

were evaluations of Bj
1, ..., B

j
nj

.

5 Fixpoint and Expressive Power of Fuzzy Relational
Algebra

The problem is now to show, by analogy with the two-valued case that this eval-
uation procedure can be iterated to get the final relation evaluating the query
with the threshold. In [Vo98] we have proved for propositional fuzzy logic pro-
gramming the approximate completeness theorem based on an analogy of the
fixpoint theorem, provided all connectives in body have truth functions left con-
tinuous and conjunctors evaluating modus ponens are residual to implications.
We can immediately use it because we can look to ground atoms in our Herbrand
base as propositional variables. Moreover the proof from [Vo98] can be general-
ized to the use of aggregation, because the only we need is that connectives are
monotone and left continuous.

The TP Operator. Recall the fuzzy fixpoint theory developed in [Vo98].
For fuzzy interpretations f over the Herbrand base, we can define the operator

TP (f)(A) = sup {Ci(P (H ←i B), f(B)) : A and H crisp unifiable }

We showed in [Vo98] that minimal fixpoint is a model of the program P and for
knowledge bases without negation the model value can be computed in an count-
able iteration of the TP operator (similarly as in the crisp case) as supremum of
at most countable many truth values.



290 J. Pokorný and P. Vojtáš

This iteration of TP will be used to prove our main theorem, namely that
expressive power of fuzzy Datalog is the same as that of the relational algebra.

So if our declarative and procedural semantics is sound and complete for
ground queries, it will be also for queries with free variables. It suffices for every
unbound variable we can extend our language by a new constant which will be
evaluated by infimum of all truth values ranging through this variable. This is
again a model of our fuzzy theory and the result holds.

So our systems allows recursion and the relational algebra calculates it cor-
rectly.

Theorem 3. Every query over the fuzzy knowledge base represented by a fuzzy
Datalog program (possibly with recursion, without negation) extended by rules
describing the equational theory of predicate calculus and properties of fuzzy sim-
ilarities can be arbitrarily exactly evaluated by iterating described operations of
fuzzy relational algebra

Proof. Every correct answer to a query is obtained by finite iteration of the
TP operator with any prescribed precision. This operator evaluates relations in
interpretation in a same way as our relational algebra does.

Note that it suffices to use similarity closure once in a row. On the other hand,
it can be used at any stage of computation – in the beginning or at the very end
(in our motivating example we have used it in the “middle”, when the crisp join
gave empty answer).

6 Threshold Computation and Query Optimization

The only substantial difference in threshold calculation is the definition of the
join �

t0
@ (R1, ..., Rn) with threshold t0 and aggregation operator @·, which is

evaluating @(B1, ..., Bn) having Ri’s evaluations of Bi’s.
We will describe the relational operation of the fuzzy join with threshold and

aggregation �
t0
@ (R1, ..., Rn) in several steps by induction through i = 1, ..., n.

1. calculate t1 = inf{z : @·(z, 1, ..., 1) ≥ t0}, i.e. a threshold for selection
from R1. This always exists as the infimum is through an nonempty set, be-
cause @·(1, ..., 1) = 1. Form the selection σTruthV >t1(R1) and take a tuple
(b1

1, ..., b
1
m1

, β1) ∈ σTruthV >t1(R1).
2. Let tβ1

2 = inf{z : @·(β1, z, 1, ..., 1) ≥ t0}. Note that this tβ1
2 always exists

because β1 > t1 which is the infimum of such z for which @·(z, 1, ..., 1) ≥ t0
and @· is monotone, hence at least @·(β1, 1, ..., 1) ≥ t0. Form the selection
σ

TruthV >t
β1
2

(R2).
Now the crucial point comes. As far as we are processing our evaluation

through the aggregation and in the beginning we do not know which tuples will
occur in final relation, because so far we do not know with which truth values
of tuples from R3, ..., Rn will enter the construction, we have to remember both
the already known truth values and their lower estimation which we get when
unknown values are substituted by 1. For this we have to introduce a technical



A Data Model for Flexible Querying 291

attribute called truth value expression and an attribute truth value estimation
along this construction.

So for the tuple (b1
1, ..., b

1
m1

, β1) we form a sort of product

P
(b11,...,b1

m1
,β1)

1to2 = (b1
1, ..., b

1
m1

, β1) × σ
TruthV >t

β1
2

(R2)

which is an m1 + m2 + 2-ary relation which for each tuple

(b2
1, ..., b

2
m2

, β2) ∈ σ
TruthV >t

β1
2

(R2)

contains a tuple (b1
1, ..., b

1
m1

, b2
1, ..., b

2
m2

, @(β1, β2, X3, ..., Xn), @·(β1, β2, 1, ..., 1)).
3. Now we have to join out pairs of identical attributes and the both truth value
expression and truth value estimation changed by corresponding similarities.
Moreover we have to select out those tuples having truth value estimation less
than or equal to t0 the original threshold for the whole body. Assume k first
elements in each tuple of R1 and R2 correspond to the same attributes. Then

we define the relation S
(b11,...,b1

m1
,β1)

1to2 which for each tuple as highlighted above
contains a tuple with constants (b1

1, ..., b
1
k, b1

k+1, ..., b
1
m1

, b2
k+1, ..., b

2
m2

, and last two
attributes

@(β1, β2, X3, ..., Xn) ∗
k∏

i=1

s(b1
i , b

2
i ), @

·(β1, β2, 1, ..., 1) ∗
k∏

i=1

s(b1
i , b

2
i ))

provided @·(β1, β2, 1, ..., 1) ∗∏k
i=1 s(b1

i , b
2
i ) ≥ t0.

Therefore, the first step of evaluating R1 and R2 into @(R1, ..., Rn) provides
the relation R1to2 which is equal to the union

R1to2 =
⋃

(b11,...,b1
m1

,β1)∈σT ruthV >t1 (R1)

S
(b11,...,b1

m1
,β1)

1to2

4. Now we proceed by induction and join R1to2 with R3. For a tuple from R1to2
as highlighted above let

t3 = inf{z : @·(β1, β2, 1, ..., 1) ∗
k∏

i=1

s(b1
i , b

2
i ) ≥ t0}.

Proceed with R1to2 and with σTruthV >t2(R3) as before and continue through all
relations up to Rn.
5. Having R1to n we can omit the attribute ”truth value expression”, because
it does not contain free variables and the relation R1to n is the evaluation of
@(B1, ..., Bn) provided R1, ..., Rn were evaluations of B1, ..., Bn, respectively.

Hence �
t0
@ (R1, ..., Rn) = R1to n.

Our approach offers possibilities for query optimization. First we can choose
the order of relations R1, ..., Rn in which we evaluate them. We can take first
the relation such that the size σTruthV >t1(Ri1) is minimal. Then having setting



292 J. Pokorný and P. Vojtáš

t2 = inf{z : @·(t1, 1, ..., 1) ≥ t0} we work with relations in such way that the
size σTruthV >t2(Ri2) is minimal, and so on.

Next in the many-valued case we can also work with incremental relations,
when evaluating iteratively the intentional relations. Here �R are those tuples
which increased their truth value strictly. All works through as in the classical
case.

Our operations can be made more effective if we can build an index for the
truth value attribute, it is used by every selection with TruthV > t.

Analogously we can introduce threshold variants of all our operations in the
fuzzy relational algebra.

Theorem 4. Every query with threshold over the fuzzy knowledge base repre-
sented by fuzzy Datalog program extended by rules describing the equational the-
ory of predicate calculus and properties of fuzzy similarities can be evaluated by
iterating threshold versions of operations of fuzzy relational algebra

There is yet another challenge and possibility how to make this fuzzy re-
lational algebra with similarities more efficient. We should investigate possible
data structures for representing fuzzy similarities and building efficient indexing
over them. To represent fuzzy similarities by a relation like here is not very ef-
fective, especially when domains are large. There are several possibilities, how
to define a similarity, e.g. by a metric, by a graph, etc.

7 Discussion and Conclusion

In the literature there are several approaches to handling uncertainty and vague-
ness in databases and several elaborated data models.

In [Bo+99] the motivation uses also a hotel reservation example of finding a
cheap and large room. Similarity is modelled by subsets of attribute domains: a
fuzzy (type-2) relation R is a subset of a set product of powersets of respective
domains R ⊆ P(D1) × . . . × P(Dn). An arbitrary tuple is of the form t =
[d1, . . . , dn] where dj ⊆ Dj . Several formulas using min and max operators
acting on similarity degrees and fuzzy membership values for data manipulation
are proposed.

In [FR97] the authors model a relevance of documents in a retrieval system by
probabilities and introduce a probabilistic data model. In their relational algebra
they do not consider the truth value as an attribute and they do not deal with
similarities. Their calculation with probabilities assigned to tuples rises from a
basic probability assignment of event keys.

In [DS96] a probabilistic data model is introduced with an additional special
relational operation of conditioning. Operations used to evaluate probabilities in
resulting relations are based on product and probabilistic sum.

In the approach of [Ei+00] interval probabilities are assigned and a relational
calculus for different probabilistic combination strategies is developed.

The work [FW00] incorporates weights into scoring rules in information re-
trieval using min and max operators.



A Data Model for Flexible Querying 293

In this paper we present an alternative approach. We have introduced a
relational algebra based on fuzzy logic and fuzzy similarities in equational theory.
In contrast to other systems we have the possibility of choosing a great variety of
many-valued logical connectives to handle truth values. The Datalog model has
a continuous semantics assuming all many-valued logical connectives except of
implications are left continuous. This means that the Datalog fixpoint is achieved
in at most countable many steps and that our fuzzy relational algebra is sufficient
for evaluating the fuzzy Datalog programs.

Acknowledgements. Research supported by grants GAČR 201/00/1031 and
VEGA 1/7557/20.

References

[Bo+99] P. Bosc, B. B. Buckles, F. E. Petry, O. Pivert. Fuzzy databases. In Fuzzy
sets in approximate reasoning and information systems. Eds. J. C. Bezdek,
D. Dubois, H. Prade. Kluwer Boston, 2000, 403–468

[BP97] P. Bosc, H. Prade. An introduction to the fuzzy set and possibility theory-
based treatment of soft queries and uncertain or imprecise databases, In:
Uncertainty Management in Information Systems: From Needs to Solutions
(A. Motro, Ph. Smets, eds.), Kluwer, 1997, 285–324.

[BR99] R. Baeza-Yates, B. Ribeiro-Neto: Modern Information Retrieval. Addison
Wesley, ACM Press-New York, 1999

[DS96] D. Dey, S. Sarkar. A probabilistic relational
model. ACM Trans. Database Systems 21 (1996) 339–369

[Ei+00] T. Eiter, T. Lukasiewicz, M. Walter. A data model and algebra for proba-
bilistic complex values. Infsys Research Report 1843-00-04, TU Wien, Au-
gust 2000, 40 pages

[FW00] R. Fagin, E. L. Wimmers. A formula for incorporating weights into scoring
rules. Theoret. Comp. Sci. 239 (2000) 309–339

[FR97] N. Fuhr, T. Roelleke. A probabilistic relational algebra for the integration
of information retrieval and database systems. ACM Trans. Inf. Systems 15
(1997) 32–66

[Ha99] Hájek P. Metamathematics of fuzzy logic, Kluwer 1999
[Kr+98] P. Krǐsko, P. Marcinčák, P. Mihók, J. Sabol, P. Vojtáš. Low retrieval remote

querying dialogue with fuzzy conceptual, syntactical and linguistical unifi-
cation. In Flexible Querying Answering Systems 98, T. Andreasen et al eds.
LNCS 1495, Springer Berlin 1998, 215–226

[Na+95] E. Naito, J. Ozawa, I. Hayashi, N. Wakami, “A proposal of a fuzzy connective
with learning function”, In Fuzziness Database Management Systems, P.
Bosc and J. Kaczprzyk eds. Physica Verlag, 345–364, (1995)

[Pe96] Petry F. E. Fuzzy databases - principles and applications. Kluwer 1996
[Ul89] Ullman J. D. Database and knowledge-base systems, Volumes I, Computer

science Press 1988
[Vo98] P. Vojtáš. Fuzzy reasoning with tunable t-operators. J.Advanced Comp.

Intelligence 2, Fuji Press (1998) 121–127



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 294-307, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

The Arc-Tree: A Novel Symmetric Access Method for 
Multidimensional Data 

Dimitris G. Kapopoulos and Michael Hatzopoulos 

Department of Informatics and Telecommunications, University of Athens 
Panepistimiopolis, Ilisia 157 84, Greece 

{dkapo,mike}@di.uoa.gr 

Abstract. In this paper we present a novel symmetric and dynamic access 
method, the Arc-tree, for organizing multidimensional data. The Arc-tree uses 
a new space-filling curve and a partition scheme that is based on bit interleav-
ing. It divides the data space into non-overlapping arc partitions through splits 
imposed by meeting planes and co-centric spheres that alternate in a fixed or-
der. The proposed structure is k-d-cut, fixed and brickwall. The Arc-tree inco r-
porates the properties of metric spaces and B- trees, is independent of data dis-
tribution and excludes the storage of empty partitions. Moreover, for a given 
data space the partitions are identical regardless of the order of insertions and 
deletions. The Arc-tree arranges partitions around a starting p oint and this 
makes the method especially suitable for applications where distance queries 
and searches on planes that intersect this point are concerned. We present the 
Arc-tree, describe its dynamic behavior and provide algorithms that prune the 
set of candidates to qualify partitions for several types of queries. 

1 Introduction 

A wide variety of modern database applications has created a strong demand for effi-
ciently processing of complex queries on huge databases. Thus, although there is a 
great range of efficient access methods, as we can see in surveys [8], [11], [21], [22], 
[24], the need for the development of innovative multidimensional access methods, as 
simple as possible, is on increase. 

Many indexing schemes, such as the R-tree [ 12] and its variants R*-tree [ 2] and 
R+-tree [ 23], use rectangles to restrict the area of data and organize the data space in 
hierarchical trees. Among others, the X-tree [ 3] reduces overlaps by employing su-
per-nodes and so postpones node splitting. It also maintains the history of previous 
splits in order to find an appropriate split. The TV-tree [ 17] uses reduction of dimen-
sionality and shifts active dimensions, ordered by importance. The A-tree tree [ 20] 
uses virtual bounding rectangles that contain and approximate minimum bounding 
rectangles. 

Other multidimensional access methods, like the SS-tree [ 26], the M-tree [ 4] and 
the Slim-tree [ 25] employ bounding spheres for the shape of regions and take advan-
tage of the characteristics of metric spaces. 

Bounding spheres allows the creation of regions with short diameters, whilst 
bounding rectangles form regions with small volumes. In order to have the benefit of 



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        295 

 

the above characteristics simultaneously, the SR-tree  [15] and the Gr-tree  [14] inte-
grate bounding spheres and bounding rectangles. A region in the SR-tree consists o f 
the intersection of a rectangle and a sphere, whilst an active region in the Gr-tree 
consists of the intersection of a rectangle and an external and internal co-centric 
sphere. 

Some indexing schemes, such as the P-tree [ 13] and the cell-tree [ 10] use poly-
hedra to shape containers. The use of additional planes results in a better approxima-
tion but increases the size of records and, consequently, decreases the fanout of the 
interior nodes. 

Unfortunately, there is no total order that preserves spatial proximity in multidi-
mensional spaces. In order to deal with the hard ordering problem, as efficiently as 
possible, space-filling curves impose a grid partition on the data space. Each grid cell 
has its own unique number that defines its position in the total order. Thus, the space-
filling curve, the total order, may be organized in an one-dimensional access method. 
Well known space-filling curves are the row-wise enumeration of the cells [21], 
Gray-codes [ 6], the Hilbert curve [7] and the Peano curve (z-ordering) [ 19]. On the 
one hand, space-filling curves are insensitive to the number of dimensions, yet on the 
other, recomputing is necessary to at least one index when joining incompatible parti-
tions of two indices. 

The G-tree [ 16] is based on the z-ordering and the BD-tree [ 5]. It uses a variable 
length partition numbering scheme and combines the features of both B-trees and 
grid files [18]. Another data structure similar to the BD-tree is the BANG file [ 9]. 
Grid files divide a data space into a grid structure by splitting each dimension into 
several non-uniformly spaced intervals. Hence, potential values of key sets are re-
garded as points in a multidimensional Cartesian product space. •n access method that 
employs the features of z-ordering and B-trees in a manner that aims at preserving 
clustering, is the UB-tree [ 1]. 

In this work, we introduce the Arc-tree, a symmetric and dynamic multidimensional 
access method that is based on a new space-filling curve and aims at efficient manipu-
lation of large amounts of point data. The rest of the paper is organized as follows: 
Section 2 introduces the Arc curve and presents the partition scheme and the structure 
of the Arc-tree. Section 3 deals with the procedures of insertion and deletion in the 
Arc-tree and Sect. 4 explains the searching algorithms for several types of queries. 
Section 5 concludes this work with a summary and future research directions. 

2 The Arc-T ree 

The proposed structure uses the properties of metric spaces. In order to organize a 
data space S through the Arc-tree, S must be considered as a metric space M = (S,d), 
where d is a distance or metric function. A distance function has the properties of 
symmetry, non-negativity and triangle inequality.  

The k-dimensional space Sk of the Arc-tree is a subset of the Euclidean space Rk,     
k � 1. We associate the norm of the difference of two points as the metric function for 
this space i.e.,  



296         D.G. Kapopoulos and M. Hatzopoulos 

 

� � � � k
k

j
jj Rx,y,   yxyx x,yd ��

01
����

�

2
1

1

2  

(1) 

We assume that the data in each dimension are bounded i.e., for each point             
x = (x1,x2,…,xk) we have that lc

j 
� xj � hc

j
, 1 � j � k, where lc = (lc

1
,lc

2
,…,lc

k
) and            hc = 

(hc
1
,hc

2
,…,hc

k
) are the leftmost and rightmost points of Sk. 

The Arc-tree uses a new spac e-filling curve, the Arc curve, to partition a multidi-
mensional space. This curve, unlike others, does not use a grid to partition a data 
space. A data space is divided by the Arc curve into non-overlapping arc partitions of 
variable size.  

Each one of the partitions is represented by a unique bit string, which resembles 
the identification of Peano regions. Those bit strings are totally ordered and thus can 
be stored in a B+-tree. There is a one to one correspondence between partitions and 
data blocks. Each partition contains no more than a maximum number of BC (block 
capacity) entries. A full partition is split into two sub-partitions. The Arc-tree e x-
cludes the possibility of storing empty partitions and is designed to adapt well to dy-
namic environments.  

Figure 1a represents the Arc curve for some partitions in a two-dimensional space. 
Figure 1b shows the bit strings for these partitions and Fig. 1c, the equivalent binary 
representation of the partition numbers in decimal form.  

 
 

 
 
 
 
 
 
 
 

                   (a)                                       (b)                                      (c)   

Fig. 1. Arc curve and partition numbers in a two-dimensional space 

The partition scheme of the Arc-tree divides the data space into non -overlapping 
arc partitions through splits imposed by meeting planes and co-centric spheres. The 
structure employs bit interleaving. Throughout this paper we use the words plane and 
sphere for hyper-plane and hyper-sphere, respectively. 

A k-dimensional space is split recursively by (k-1)-dimensional planes and 
k-dimensional spheres. We use �

�
1
1

k
j j   directions of planes and one direction of 

sphere that alternate in a fixed order among the 

�

��
1

1

1
k-

j

jalt  (2) 

possibilities. A splitting plan passes from a fixed line that belongs to the plane of two 
dimensions and includes the starting point. Initially, this line is the diagonal of the 
rectangle that is formed by the two dimensions. A splitting plan halves a partition into 



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        297 

 

two equal sub-partitions. Before we define a splitting sphere, we proceed with some 
definitions and notations. 

A closed sphere � �rcpS ,  and an open sphere S(cp,r) with central point cp and ra-

dius r in Sk, are defined as follows 

� � � �� & ,: , rcpxdSxrcpS k ���  (3) 

� � � �� & ,: , rcpxdSxrcpS k -��  (4) 

We use the notation rs for the radius that resides on the left of r and it is closest to 
it. That is, there does not exist radius r’ in the Arc-tree such that rs < r’ < r. If r is the 
smallest radius, then we define rs = 0. The similar notation rb is used for the radius that 
resides on the right of r and is closest to it. Thus, there does not exist radius r’ in the 
Arc-tree where r < r’ < rb.  If r is the maximum radius, then we define rb = d(lc,hc). We 
choose the point lc to be the central point of the spheres. That is, cp = lc.  

The radius of a splitting sphere S(cp,r) is 

2
bs rr

r
�

�  
(5) 

Initially, it is  rs = 0  and  rb = d(lc,hc). 
A partition P imposed by the Arc-tree is a subset of Sk and is defined as the inter-

section of two segments. 

)()( PHPRP 2�  (6) 

The segment R(P) is the complement of an open sphere S(cp,rs) to a co-centric 
closed sphere � �rcpS , . That is 

� � � � � �s,, rcpSrcpSPR ��  (7) 

The segment H(P) is a space that is included by two planes. 
A split of a full partition is triggered by the insertion of a new point. The parent 

partition P is replaced by its offspring partitions. It follows the redistribution of data 
points. Data blocks are written on disk and the index is updated with the new partition 
numbers. There is no need to store splitting points, as they are computed from the 
partition numbers. Only non-empty partitions, which span the data space, are stored in 
the index. From the above splitting policy, we conclude that the Arc-tree is k -d-cut, 
fixed and brickwall. 

Successive parts of Fig. 2 are examples of how partitions are split in the case of  k 
= 2. For a better representation, we can assume BC = 2. Initially, as shown in Fig. 2a, 
the data space is divided into two equal size partitions by splitting along the diagonal 
that connects the point lc and hc. The first sub-partitions of the data space are num-
bered 0 and 1. The insertion of a third point into partition 1, results in a split. In 
Fig. 2b, a sector of the sphere 

� �
01

�
01

�
2

,
,

2
, cc

c
bs

c

hld
lS

rr
lS  

(8) 



298         D.G. Kapopoulos and M. Hatzopoulos 

 

splits the parent partition 1 and creates the children partitions 10 and 11. Each child is 
the complement of its brother. The comp(P) (complement) of a partition P is settled 
by inverting the least significant bit of P, whereas the parent(P) is settled by remov-
ing the least significant bit from P. When the partition 11 becomes full, a part of the 
diagonal that connects the point  

01

�
2

11
c

cc
c ,

2
  and  h

hl
l  

(9) 

halves this partition into sub-partitions 110 and 111 (Fig. 2c). When the partition 110 
becomes full, the sector of the sphere  

� �
01 4

,*3
, cc

c

hld
lS  

(10) 

that belongs to the partition 110 creates the sub-partitions 1100 and 1101 (Fig. 2d). 
Figures 2e and 2f show two additional splits. The dash line in Fig. 2f depicts the Arc 
curve. 

 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 

 
 

(d)                                            (e)                                            (f) 

Fig. 2. Splits in a two-dimensional space 

Figure 3 shows some splits in a three-dimensional space. The first three parts of the 
figure, show splits imposed by the planes that are perpendicular to the diagonals of 
the dimension pairs (d1,d2), (d1,d3) and (d2,d3), respectively. These planes divide the 
regions they cross into equal sub-regions. The notation di, 1 � i � k  stands for the      
i-dimension. The latter part of this figure shows a split imposed by a sphere. For the 
clarity of presentation we do not show points inside partitions. Continuous lines for 
the dimensions and dash lines for the planes and the sphere are used. 

 
 

lc 

 hc  hc  hc 

(a)                                            (b)                                            (c) 
 lc  lc 

hc 

 lc 

hc hc 

 lc  lc 



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        299 

 

d2 d2 

d3 d3 

d1 d1 

 
 
 
 
 
 
 
 
 
 

(a)                                                              (b)  
 
 
 
 
 
 
 
 
 
 

 (c)                                                              (d)  

Fig. 3. Splits in a three-dimensional space 

The partition scheme of the Arc-tree aims at placing as accurately as possible, pa r-
titions that are spatially successive in a multidimensional space in successive places in 
the index. Partition numbers are stored in a B+-tree. We use links from right to left in 
the leaf level of the index in order to facilitate sequential processing when searching 
for all the answers, after the first match. The Arc-tree demands a small storage space 
because an entry in its block is just a pair of a partition number (bit string) and an 
address (pointer). Addresses in the leaf level and internal nodes refer to data blocks 
and nodes of some lower level, respectively.  

 
 
 
 
 
 
 

Fig. 4. The Arc-tree for the part itions of Fig. 2f 

Figure 4 shows the Arc-tree that co rresponds to the partitions of Fig. 2f. The active 
partition numbers, which form the partition scheme, are sorted in lexicographic order 
at the leaf level of the tree. This means that 1101 < 111. Entries in internal levels are 
merely separators. They may exist from previous splits and thus may not be active 
partition numbers.  

The Arc-tree preserves symmetry as it arranges partitions around a starting point. 
This makes the method particularly suitable for applications where distance queries 

000 001   01 10 1100 1101   111 

001   10 1101 

110 

d3 

d2 

d1 

d3 

d2 

d1 



300         D.G. Kapopoulos and M. Hatzopoulos 

 

and searches on planes that intersect this point are concerned. Until now, we have 
used as this point, the leftmost point of the data space. This is not a restrictive con-
straint. A starting point may be any point of special interest. For example, in geo-
graphic and astronomy applications where the earth is considered the center of the 
universe, and distance queries as well as queries based on longitude, latitude and 
altitude are of special interest, the starting point could be the center of the data space.  

Figures 5a and 5b show partitions and the Arc curve, respectively in a two-
dimensional space with uniform distribution. The starting point of the organization is 
the center of the data space. 

 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 5. Partitions and their Arc curve in a two-dimensional space with uniform distribution 

3 Update Operations 

The Arc-tree adapts its shape to large dynamic volumes of data, no matter what their 
distribution and does not need reorganization. Its partitioning scheme for a given data 
space is identical regardless of the order of insertions and deletions. Following, we 
will describe the procedures for inserting and deleting multidimensional points from 
the Arc-tree.  

3.1 Insertion 

To insert a point p in the file, we first compute its initial partition Pinit and then the 
actual partition Pact where p should be inserted. The length of the bit string of Pinit is 
equal to b, where b is the maximum number of bits of the partitions that exist in the 
Arc- tree. We traverse from the top, down the Arc-tree to reach the leaf level searc h-
ing for Pinit. If it exists, we set Pact = Pinit. Otherwise, we search for the first ancestor of 
Pinit moving from right to left at leaf level. 

If such an ancestor exists, then Pact is set to be equal to it. The data block of Pact is 
transferred into main memory and if there is space, we insert p and write the block 
back on disk. If the block is full, we have a case of overflow and we split the block, as 
described in the previous section. There is no need to store any meta-information 
regarding splitting. 

10100 10110 10111 10101

10001                                                                    00101 

10011           11100          11101            00111 

11001 11110 11111 01101
11011 01111
11010 01110

10010           01000         01001            00110 

10000                                                                    00100 

00000                  00010     00011                 00001 

11000 01010 01011 01100

(a)                                                                        (b) 



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        301 

 

If an ancestor of Pinit does not exist, we will find either a partition that is not a su-
per-partition of Pinit or we will reach the first partition of the index. Then, Pact is set to 
be the largest ancestor of Pinit that does not overlap with an existing partition in the 
index. Afterwards, we insert Pact into the Arc-tree and place the point p into a new 
data block that is aligned to Pact. 

If the attributes of two points are integers or real numbers, then the calculation of 
their distance is obvious. For strings we use an algorithm that transforms them to 
unsigned long integers. Thus, distance calculations are arithmetic for all data types. 
There is a slight possibility of two different strings to be transformed into the same 
long integer. The likelihood of an impossible partition split due to the mapping of all 
data points to the same point is remote. The greater the number of dimensions, the 
smaller the possibility. The case of an impossible split is handled by overflow data 
blocks. 

3.2 Deletion 

For the deletion of a point p, we first compute Pinit and then check if Pact exists in the 
index. If so, we delete the point and rewrite the data block on disk. In order to have 
blocks filled over a threshold, we try to merge a partition P with comp(P) if after a 
deletion from P it is left with less than half points. Thus, if the sum of the number of 
points of P and comp(P) does not exceed the block capacity, we merge the underflow 
data block of P with the block of comp(P) by moving all data to one block. Conse-
quently, parent(P) replaces P and comp(P) in the index. If comp(P) does not exist in 
the index, parent(P) replaces P, and the merging procedure continues in order to ob-
tain larger and more full partitions. 

4 Search 

In this section we examine how several types of queries are processed using the 
Arc-tree.  

The Arc-tree efficiently handles distance queries of the type ‘ find all points p:   
distl � d(p,lc) � disth’, where the distances distl and disth are real numbers. Other ex-
pressions based on the operands �, -, �, �, and �, are sub-cases of the above general 
query form. The Arc-tree takes advantage of the splits imposed by spheres and r e-
stricts the number of partitions to be examined. First, we evaluate two mask bit strings 
msl and msh through distl and disth, respectively. As far as splits imposed by spheres 
are concerned, these strings declare the lower and higher position that the searched 
points could have in the data space, respectively. The above strings are composed of 
3b/alt4 bits. This means that the number of bits in the above mask strings is equal to 
the number of splits that have been imposed by spheres in a partition with length 
equal to b. That is, the number of this partition has maximum length among existing 
partitions. The algorithm in pseudo code for the creation of these mask strings is listed 
below. 

 
 



302         D.G. Kapopoulos and M. Hatzopoulos 

 

ms_spheres(dist,b) 
{ 
  r=d(lc,hc)/2;               // sphere radius  
  ms=””;                     // null string  
  for (i=1;i<=3b/alt4;i++) 
    if (dist>r) { 
      concatenate “1” to ms; 
      r=3*r/2; 
    } 
    else { 
      concatenate “0” to ms; 
      r=r/2; 
    } 
  return ms; 
} 

The Arc-tree is searched in the range [ Lact,Hact], where Lact and Hact are the actual 
partitions of the points that belong to the initial partitions Linit and Hinit with numbers 
l1l2…lb  and  h1h2…hb, respectively. The creation of Linit is based on msl, whereas Hinit is 
based on msh. Lact has the smallest partition number that may qualify the query, 
whereas Hact has the biggest. It is 

 
 0) mod (   if   ,

  0) mod(   if            ,0  

�
�

�
altjmsl

altj 
l

altj
j   , 1 � j � b 

(11) 

 
 0) mod (   if  ,

  0) mod(   if            ,1  

�
�

�
altjmsh

altj 
h

altj
j   , 1 � j � b 

(12) 

A partition P �  [Lact,Hact] is a candidate to qualify the query. Let b(P) be the number 
of bits of P. If pj, 1 � j, is the jth bit of the partition number of P, then we create a new 
partition P’ whose number of bits is not greater than the number of bits of msl and 
msh. Its jth bit p’

j  is 

� �
54

5
63

6���
alt

Pb
jpp altjj 1   ,*

'  
(13) 

Only the data blocks of the partitions P with P’ such that 

��      ' mshPmsl     'Pmsl  (14) 

are examined for qualified points. The operation  stands for sub-partition. We refer 
to the above qualification as MSQ (mask string qualification). If it is  b(P) - alt  then 
MSQ is not an issue. 

Figure 6 is an example of the distance query ‘find all points p: 11 � d(p,lc) � 18’ 
applied to the partitions of Fig. 2f. We suppose that  d(lc,hc) = 20. The query region is 
the shadow roll that is included between the dash arcs. It is b = 4, msl = 10, msh = 11, 
Linit = 0100, Hinit = 1111, Lact = 01 and Hact = 111. The partition numbers that belong to 
[Lact,Hact] are 01, 10, 1100, 1101 and 111. Although the partition 10 is crossed by the 



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        303 

 

Arc curve that connects the partitions 01 and 111, it is not examined any more as it 
does not satisfy the MSQ. The data blocks of 01, 1100, 1101 and 111 are examined 
for qualified points. 

 
 
 
 
 
 
 
 
 

 

Fig. 6. A distance query for the partitions of Fig. 2f 

We will now examine the query ‘find all points p, which belong in a level included 
between two lines that cross lc’. Sub-cases of the above query are ‘find the points, 
which are between and not on the lines’ and ‘find the points on a line’. 

A line in a k-dimensional space is described by the set of the following (k-1) equa-
tions. 

11  ,    ,* 111 ����� ��� kjRadad jjjj  (15) 

The real number aj-1, 1 � j � k-1 expresses the tangent of the corner that forms the 
dimension dj, with the projection of the line at the level of the dimensions dj and dj+1. 

In order to answer the above query efficiently, the Arc-tree takes advantage of the 
splits that have been imposed by the planes. First, we evaluate the mask bit strings msl 
and msh which, in the current type of query, declare the lower and higher position of 
possible qualified points, as far as splits imposed by planes are concerned. These 
strings are composed of  (b - 3b/alt4)  bits. That is, the length of their partition number 
is equal to the number of splits imposed by planes in a partition with its length equal 
to b. msl and msh are created through the set of equations of the two lines that stand 
for the lower and higher limit of the query, respectively. The algorithm is listed be-
low.  

ms_planes(a[k-1],b) 
{ 
  n=0; 
  for (i=1;i<k;i++) 
    for (j=i+1;j<=k;j++) 
      t[n++]=(hcj-lcj)/(hci-lci);      // tangent by first 

         // splitting plane projection in level of di,dj 
  ms=””;                                 // null string 
  m=0; 
  while (m<b-3b/alt4) { 
    n=fmod(m++,alt-1); 
    if (n==0) {      // new cycle of splits is examined 
      i=1;                             // dimensions of 

lc 

hc 



304         D.G. Kapopoulos and M. Hatzopoulos 

 

      j=i+1; }                       // splitting plane 
    else  
      if (j==k) 
        j=++i+1; 
      else  
        j++; 

    f=
�
�
1j
iq a[q-1];  // coefficient of the line for di,dj 

    if (f>t[n]) {        // find the sector of the line 
      concatenate “1” to ms; 
      t[n]=3*t[n]/2; } 
    else { 
      concatenate “0” to ms; 
      t[n]=t[n]/2; } 
  } 
  return ms; 
} 

For this type of query we have 

� �
 

 0) mod (   if   ,

  0) mod (   if                    ,0  

 div �
�

�
� altjmsl

altj
l

altjj
j   , 1 � j � b 

(16) 

� �
 

 0) mod (   if    ,

  0) mod(   if                      ,1  

 div �
�

�
� altjmsh

altj 
h

altjj
j   , 1 � j � b 

(17) 

The function div stands for quotient. We define the bits of the partition P’ as 

� � � � 0 mod       1    ,'
 div ������ altjbjpp jaltjj  (18) 

As happens in the previous type of query, only the data blocks of the partitions P 
with P’ satisfying the condition MSQ are examined for qualified points. 

 
 
 
 
 

 
 
 
 
 
 

Fig. 7. A query region included between lines for the partitions of Fig. 2f 

Figure 7 is an example of the query ‘find all points p, which are between the lines 
d2 = tan(4o)*d1 and d2 = tan(18o)*d1’ applied to the partitions of Fig. 2f. The query 
region is restricted by the dash lines and forms the shadow triangle. We suppose that 
the three partition lines in this figure have coefficients tan(22o), tan(40o) and tan(58o), 

lc 

hc 



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        305 

 

respectively. As it is, tan(4o) = 0.07, tan(18o) = 0.32, tan(22o) = 0.4, tan(40o) = 0.84, 
tan(58o) = 1.6 and b = 4, we have msl = 00, msh = 00, Linit = 0000, Hinit = 0101, Lact = 000 
and Hact = 01. The partition numbers that belong to [Lact,Hact] are 000, 001 and 01. Only 
the data blocks of the partitions 000 and 01 that satisfy the condition MSQ are exam-
ined for qualified points. 

A range query is equivalent to a rectangle RQ in Sk. The number of corners of RQ 
is at most 2k. In order to answer a range query, we first estimate the initial partitions of 
the corners of RQ. Let Linit and Hinit be the lower and higher partition among these 
initial partitions. Afterwards, we estimate the actual partitions Lact and Hact that repre-
sent the lower and higher existing partition among all the corners. Partitions in the 
range [Lact,Hact] are candidates to qualify. The previously shown algorithms that take 
advantage of splits imposed by spheres and planes, prune candidate partitions. 

First, we create the mask strings msl and msh through the call of 
ms_spheres(d(lc,lc(RQ)),b) and ms_spheres(d(lc,hc(RQ)),b), 
respectively. lc(RQ) and hc(RQ) are the leftmost and rightmost corners of RQ. For each 
partition P in [Lact,Hact] we create the partition P’, as shown in distance queries, and we 
check if it satisfies the condition MSQ. If not, the partition is excluded from further 
consideration. 

Second, for each corner of RQ we estimate the line that connects it with the starting 
point lc. Afterwards, we use the function ms_planes(a[k-1],b) to compute the 
mask strings of all corners. We are reminded that aj-1, 1 � j � k-1 is the tangent of the 
corner that forms the dimension dj with the projection of the line at the level of the 
dimensions dj and dj+1. We set msl and msh to be the minimum and the maximum 
mask bit string, respectively. Candidate partitions are pruned in a second filter step 
with the condition MSQ. Only regarding the remaining partitions do we access their 
data block to examine for qualified data. 

 
 
 
 
 
 
 
 

 
 

Fig. 8. A range query for the partitions of Fig. 2f 

Figure 8 is an example of a range query RQ, shown by the shadow rectangle formed 
by dash lines, for the partitions of our running example. The initial partitions resulting 
from the examination of the corners of RQ are Linit = 1011 and Hinit = 1110. Thus, we 
have Lact = 10 and Hact = 111. As a result, the partitions in the range [10,111] are candi-
date to qualify. These partitions are 10, 1100, 1101 and 111.  

The use of ms_spheres for the leftmost and rightmost point of RQ gives           
msl = 01 and msh = 10, respectively. Thus, MSQ excludes 1101 from further consid-
eration. The use of ms_planes for the lines that connect the corners of RQ with lc 
results to msl = 11 and msh = 11. This means that MSQ excludes 1100 from the set of 

hc 

lc 



306         D.G. Kapopoulos and M. Hatzopoulos 

 

candidate partitions. Therefore, only the data blocks of the partitions 10 and 111 are 
examined for qualified data. 

The procedures to answer a partial match and an exact match query are similar to 
that of a range query, as the sets of partial match and exact match queries are subsets of 
range queries.  If j, 1 � j � k, is a dimension that participates in a partial match query 
with free value, then the upper and lower corners of RQ, as regards this dimension, 
possess the upper and lower value of di, respectively. In an exact match query, RQ 
degenerates to a point p. We first compute Pinit and then examine if Pact exists in the 
index. If so, we access the data block of Pact and examine if p belongs there. 

5 Summary 

In this paper, we presented the Arc-tree, a novel balanced and dynamic access 
method for the manipulation of multidimensional data. The proposed structure is 
based on the Arc curve. This is a new space-filling curve that, unlike others, does not 
use a grid to partition a data space.  

The Arc-tree divides the data space into non-overlapping arc partitions through 
splits imposed by meeting planes and co-centric spheres that alternate in a fixed order. 
It employs bit interleaving and combines the features of metric spaces and B-trees. It 
excludes the storage of empty partitions and is independent of data distribution. 
Moreover, for a given data space, the partitions are identical regardless of the order of 
insertions and deletions. As far as its splitting policy is concerned, it is k-d-cut, fixed 
and brickwall.  

The Arc-tree preserves symmetry as it arranges partitions around a starting point. 
This makes the method especially suitable for applications where distance queries and 
searches on planes that intersect this point are concerned. The set of possible qualified 
partitions is restricted with the use of mask strings that take advantage of the manner 
by which splits have been imposed by planes and spheres.  

We presented algorithms for inserting, deleting and searching data from the 
Arc-tree. We believe that the Arc-tree is a promising access method capable at 
achieving its design motivation, which is to handle large quantities of multidimensional 
data efficiently. 

Work in the pipeline includes the confirmation of the efficiency of the Arc-tree via 
experimental results and its extension in order to handle complex spatial objects. 

References 

1. Bayer, R.: The Universal B-tree for Multidimensional Indexing: General Concepts. In: 
World-Wide Computing and Its Applications. Lecture Notes in Computer Science, 
Springer-Verlag, Tsukuba Japan (1997) 10-11  

2. Beckmann, N., Kriegel, H-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and  
Robust Access Method for Points and Rectangles. In Proc. ACM SIGMOD, (1990) 
322-331  

3. Berchtold, S., Keim, D.A., Kriegel, H-P.: The X-tree: An Index Structure for High -
Dimensional Data. In Proc. 22nd Int. Conf. on VLDB, (1996) 28-39  



The Arc-Tree: A Novel Symmetric Access Method for Multidimensional Data        307 

 

4. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similari ty 
Search in Metric Spaces. In Proc. 23rd Athens Int. Conf. on VLDB, (1997) 426-435  

5. Dandamundi, S., Sorenson, P.: An empirical performance comparison of some variations 
of the k-d tree  and BD-tree. Int. J. Comp.  Inform. Sci., Vol.14, (1985) 135-159  

6. Faloutsos, C.: Gray-codes for partial match and range queries. IEEE Trans. on Software 
Eng., Vol. 14, (1988) 1381-1393  

7. Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In Proc. ACM SIGACT-
SIGMOD Symp. Principles of Database Systems, (1989) 247-25 2 

8. Faloutsos, C.: Searching Multimedia Databases by Content. Kluwer Academic Press, 
(1996). 

9. Freeston, M.: The BANG file: a new kind of grid file. In Proc. ACM SIGMOD, (1987) 
260-269  

10. Gunther, O., Bilmes, J.: Tree-Based Access Methods for Spatial Databases: I mplementa-
tion, and Performance Evaluation. IEEE Trans. on Knowledge and Data Eng., Vol. 3, no. 
3, (1991) 342-356  

11. Gaede, V., Gunther, O.: Multidimensional Access Methods. ACM Computing Surveys, 
Vol. 30, no. 2, (1998) 170-231  

12. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. ACM 
SIGMOD, Boston, (1984) 47-57  

13. Jagadish, H.V.: Spatial Search with Polyhedra. In Proc. 6th IEEE Int. Conf. on Data Engi-
neering, (1990) 311-319  

14. Kapopoulos, D.G., Hatzopoulos, M.: The Gr_Tree: The Use of Active Regions in G-Trees. 
In: Eder J., Rozman, I., Welzer T. (eds.): Advances in Databases and Information Sys-
tems. Lecture Notes in Computer Science, Vol. 1691. Springer-Verlag, (1999) 141-155 

15. Katayama, N., Satoh, S.: The SR-tree: An Index Structure for High -Dimensional Nearest 
Neighbor Queries. In Proc. ACM SIGMOD, (1997) 369-380  

16. Kumar, A.: G-Tree: A New Data Structure for Organizing Multidimensional Data. IEEE, 
Trans. on Knowledge and Data Eng., Vol. 6, no. 2 (1994) 341-347 

17. Lin, K.I., Jagadish, H.V., Faloutsos, C.: The TV-Tree: An Index Structure for High -
Dimensional Data. In VLDB Journal, Vol.3, no.4, (1994) 517-542  

18. Nievergelt, J., Hintenberger, H., Sevcik, K.C.: The Grid File: an adaptable, symmetric 
multikey file structure. ACM Trans. Database Syst., Vol. 9, no. 1, (1984) 38-71  

19. Orenstein, J., Merrett, T.: A class of data structures for associative searching. In Proc. 
ACM SIGACT-SIGMOD Symp. Principles of Database Systems, (1984) 181-190  

20. Sakurai, Y., Yoshikawa, M., Uemura S., Kojima, H.: The A-tree: An Inde x Structure for 
High Dimensional Spaces Using Relative Approximation. In Proc. 26th Cairo Int. Conf. on 
VLDB, (2000) 516-526  

21. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, MA 
(1990) 

22. Samet, H.: Spatial Databases. In Proc. 23rd Athens Int. Conf. on VLDB, (1997) 63-129  
23. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: A Dynamic Index for Multid i-

mensional Objects. In Proc. 13th Brighton Int. Conf. on VLDB, (1987) 507-518  
24. Manolopoulos, Y., Theodoridis, Y., Tsotras, V. J.: Advanced Database Indexing. Kluwer 

Academic Publishers, Boston (1999) 
25. Traina, C., Traina, A., Seeger, B., Faloutsos, C.: Slim-Trees: High Performance Metric 

Trees Minimizing Overlap Between Nodes. In Proc. EDBT (Extending Database Technol-
ogy), Konstanz, Germany, (2000) 

26. White, D., Jain, R.: Similarity Indexing with the SS-tree. In Proc.  12th ICDE, (1996) 
516-523  

 
 



Evaluation of Join Strategies for Distributed
Mediation

Vanja Josifovski�, Timour Katchaounov, and Tore Risch

Uppsala Database Laboratory, Uppsala University, Sweden,
vanja@us.ibm.com, timour.katchaounov@dis.uu.se, tore.risch@dis.uu.se

Abstract. Three join algorithms are evaluated in an environment with
distributed main-memory based mediators and data sources. A streamed
ship-out join ships bulks of tuples to a mediator near a data source,
followed by post-processing in the client. An extended streamed semi-join
in addition builds a main-memory hash index in the client mediator. A
ship-in algorithm materializes and joins the data in the client mediator.
The first two algorithms are suitable for sources that require parameters
to execute a query, as web search engines and computational software,
and the last is suitable otherwise. We compare the execution times for
obtaining all and the first N tuples, and analyze the percentage time
spent in subsystems, varying the network communication speed, bulk
size, and data duplicates. The join algorithm leads to orders of magnitude
performance difference in different mediation environments.

1 Introduction

Integration of data from sources with varying capabilities has been intensively
studied by the database community in the recent decade. The Amos II system [8,
9,17] uses the wrapper-mediator paradigm to integrate data from several sources.
One of the salient features of Amos II is a distributed architecture where a num-
ber of interconnected mediator servers cooperate in providing the users and the
applications with the required view of the data in the sources. We believe that
a distributed mediator architecture is needed because it is unrealistic to assume
that a single mediator server can be deployed in an enterprise composed of mul-
tiple organizational units. When many mediator servers become available on the
network, composability will be required for designing new distributed media-
tor servers in terms of the existing ones, thus reusing mediation specifications.
Multiple mediators will also alleviate the performance bottleneck problems that
appear when all the queries are handled by a single mediator.

Having some of the basic assumptions different from the classical database
systems, query processing in a distributed mediator system requires some novel
strategies and solutions. One of the major reason for this is the different cost
model in this environment. The I/O and CPU costs used in the traditional query
optimization [14] are largely insignificant here compared to the cost of accessing

� Current address: IBM Almaden Research Center, San Jose, CA 95120, USA

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 308–322, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Evaluation of Join Strategies for Distributed Mediation 309

data in external sources. While new cost models have been developed for use in
mediator frameworks with centralized architecture [18], no experimental results
are reported using a distributed mediator framework. In this work we quan-
tify empirically the relations among the different costs in a wrapper-mediator
environment, as for example, the network cost and the data source access costs.

Traditional data integration systems [11,16] send all data to the mediator
for joining. Such ’ship-in’ methods do not allow for integration of ’non-database’
data sources that require some input, since it is not possible to ship the pro-
gramming logic from these systems into the mediator. Also they are not good
for top-N queries where only a first few tuples are retrieved.

Three join algorithms for a distributed mediation environment are presented
and analyzed. An outer collection, generated as an intermediate result of a previ-
ous computation, is joined with an inner collection produced from a data source.
Two ship-out algorithms ship data toward the sources. In these algorithms, in-
termediate result tuples are shipped to the sources where they are used as pa-
rameters to precompiled query fragments (subqueries or function calls) of the
original query. The first algorithm is an order-preserving semi-join which is suit-
able when there are no duplicates in the outer collection. The second algorithm
uses a temporary hash index of possibly limited size to reduce the number of
accesses to the data sources. It is suitable when there are duplicates in the outer
collection. Both ship-out algorithms are streamed [6] and the data is shipped
between the mediator servers in bulks that contain several tuples to avoid the
message set-up overhead. Finally, for comparison, a ship-in algorithm is ana-
lyzed, which is suitable when the sources cannot accept parameterized queries
and when the data retrieved from the sources is small enough to be stored in a
temporary main-memory index in the mediator.

The algorithms are evaluated in an environment with an ODBC data source
and a mediator server running on Windows NT platforms, connected by ISDN
and LAN. Substantial performance gains were measured (up to factor 100) when
using our framework over an ISDN connection to access a relational database
server, as compared to accessing the relational database with ODBC directly
from the client, since bulk oriented join processing between the mediators mini-
mizes ISDN message traffic and eliminates all expensive remote ODBC calls.

2 Background

As a platform for the work in this paper we use the Amos II mediator database
system [8,9,17]. The core of Amos II is an open light-weight and extensible
DBMS. It is a distributed mediator system where both the mediators and wrap-
pers are fully functional Amos II servers, communicating over the Internet. For
good performance, and since most the data reside in the data sources, each
Amos II server is designed as a main-memory DBMS.

Some of the Amos II servers can be configured to wrap different kinds of
data sources, e.g. ODBC compliant relational databases [4] or XML files [12].
Other servers reconcile conflicts and overlaps between similar real-world entities



310 V. Josifovski, T. Katchaounov, and T. Risch

modeled differently in different data sources, using the mediation primitives [8,
9,17] of the query language AmosQL .

Users and applications can pose OO queries to any Amos II server. We call
the server(s) to which application queries are posed client mediator(s) for those
queries. The other Amos II servers involved in answering a query are called
mediator servers. The mediator servers may run on separate workstations and
provide data integration, wrapping, and abstraction services through which dif-
ferent views are presented in different mediators. For example, in a mobile envi-
ronment a portable computer could have a client mediator that integrates data
represented by several mediator servers on a company LAN. A mediator server
can have different types of data sources attached and access a number of other
mediator servers.

The AmosQL query below contains a join and selection over the table A at
the source DB1, and B at DB2, based on values of functions fa and fb:

select res(b)
from A@DB1 a, B@DB2 b
where fa(a) = fb(b);

The query is issued in a client mediator over data that can be either directly
stored in DB1 and DB2 or, if these are Amos II servers, retrieved from wrapped
data sources. Strategies to execute this equi-join will be the focus of this paper.

The queries are rewritten by the optimizer to eliminate redundant com-
putations. After the rewrites, queries operating over data outside the medi-
ator are decomposed into distributed query fragments, executed in different
Amos II servers and data sources. The decomposition uses heuristic and dy-
namic programming strategies in three stages [10]: query fragment generation,
fragment placement and fragment scheduling. Each Amos II server uses a single-
site cost-based optimizer to generate optimized execution plans for the query
fragments. The fragments for other types of data sources are handled by the
mediator if the source has no query processing capabilities, or by the source
otherwise.

3 Algorithm Descriptions

While a naive data source interface provides only execute functionality for queries,
Amos II also provides bulked ship-out and execute functionality where a remote
Amos II server accepts and store tuples locally in main-memory, and then ex-
ecutes a query fragment using them as an input. When joining directly to a
data source, the communication is directly with it and the processing is one
tuple at the time for the ship-out algorithms, assuming that storing bulks of
the intermediate results is not possible in data sources because of their auton-
omy.



Evaluation of Join Strategies for Distributed Mediation 311

3.1 Ship-Out Join Algorithms

In general, the ship-out algorithms can be described with the following steps:

1. preprocess and prepare the input collection for shipping
2. ship the input collection to a remote site
3. execute the query fragment over the collection at the remote site
4. return result of query fragment execution to the coordinating mediator
5. assemble the result collection to be emitted from the join

Steps 1, 4 and 5 are executed locally, while 2 and 3 are performed at another
Amos II server by its join request handler.

The input collection is a table where some columns are used as parameters
to the remote query fragment; other columns are passed through to the later
post-processing in the mediator, or are assembled as parts of the query result.

A straight-forward implementation of a ship-out equi-join operator would
ship the whole input bulk to the remote site, execute the remote query fragment
on the bulk appending its result to the input, and then ship this result back.
The first improvement of the naive strategy we propose is the project-concat
algorithm (PCA) in Fig. 11. It improves the naive strategy by the following two
data transformations based on the semi-join algorithm [2]:

– The input bulk is projected over the data columns that are actually used in
the remote query fragment, before shipping them there.

– After the query fragment is executed the result shipped back to the mediator
contains only the relevant columns from the query fragment result.

. . . . 

. .
 . 

. 

Pr oject Deproxify
 OI Ds

Project Concat
Proxify 

OIDs

Destr ingify
OIDs

Str ingify
 OIDs

Join  Operator Join  r equest handler  

Materialized bulk from the input

output

1 2 3

8 7 6 5

Execute
 SF

4

Fig. 1. Project-concat ship-out algorithm

1 Amos II is object-oriented and steps 2, 3, 5, and 6 handle object identifier (OID)
conversions, which are not further elaborated here.



312 V. Josifovski, T. Katchaounov, and T. Risch

Table 1. Example execution of equi-join using the project-concat algorithm

r va
“T” 5

b1 “V” 4
“K” 5
“M” 3
“L” 5

b2 “M” 2
“G” 4
“Y” 4

πKS−→

va
5

b1 4
5
3
5

b2 2
4
4

to DB1−→ . . .

r
b1 “M”
b2 “M”

πRS←−
r va

b1 “M” 3
b2 “M” 2

concat←−

tmp
false

b1 false
false
true
false

b2 true
false
false

from DB1←− . . .

The difference between PCA and the classical semi-join is in the use of order for
matching the tuples from the joined collections.

The result of the join is assembled by a simple concatenation of the input
and the result shipped back from the remote Amos II mediator or data source.
Since the operations are order preserving, concatenation can be used instead of
a more expensive join.

Table 1 illustrates an execution of PCA between the results of query frag-
ments QF1 executed at DB1 and QF2 executed at DB2. The input is a collec-
tion of tuples with columns va and r produced by the execution of the fragment
QF2, and a collection of tuples produced by the execution of QF1 containing
va values and keys of table tB. The fragments are joined over va and the result
is represented by column r. Since there are no result columns that are shipped
back from DB1 to DB2, a boolean value is used to identify if the tuples produced
by QF1 have a matching va value in the tuples produced by QF2. We assume
that the fragment at DB1 produces the following table:

va

tB va
ib1 4
ib2 5
ib1 6

where ibk denotes a key of tB. The example illustrates the execution over 2
bulks of size 4, named in the example as b1 and b2. In the example, first the
projection strips the r values from the input bulks since they are not used in



Evaluation of Join Strategies for Distributed Mediation 313

the join. Next, the bulks are shipped to DB1 where the query fragment QF1 is
executed. The resulting set of boolean values is shipped back to the mediator.
The concatenation shown in the example is a special case where the executed
function does not return any data used later in the query processing. In this case,
the concatenation of the returned boolean values and the input tuples actually
filters the tuples for which the result is true. The final projection removes the
va values to form the requested result.

The PCA has the advantage of improving the naive implementation, while
preserving the simplicity of the processing. All operations have constant complex-
ity per data item and therefore cheap to perform. Nevertheless, it is inefficient
when there is a large percentage of duplicates in the input bulk(s), an expensive
query fragment, and/or expensive communication between the servers involved.

The traditional semi-join algorithm (SJA) [2] improves the performance of
the PCA when duplicates are involved. After projecting the input bulk over the
columns used as input to the remote query fragment, SJA performs duplicate
removal before shipping the data. When there is a large percentage of duplicates
within the bulks, this reduces both the size of the shipped data and the number
of executions of the remote query fragment. The result of the query fragment
execution is shipped back to the calling server where, as in the previous algo-
rithm, the shipped tuples are concatenated to the result of the query fragment
invocation. Next, an equi-join is performed over the input bulk and the result of
the concatenation. Here, because of the duplicate removal it is not possible to
match the tuples by their rank in the bulk.

The SJA benefits from avoiding shipping duplicate entries over the network
and executing the query fragment for them, but only for duplicates within a
single bulk and with the added costs of the two additional phases of duplicate
removal and equi-join.

To avoid duplicates over different bulks, the algorithm in Fig. 2, SJMA (semi-
join with materialized index algorithm) extends SJA by saving the index built
up for the bulks of the outer collection between executions for different bulks.
The shipped data is passed through an additional anti-join over the set already
pruned from duplicates and the temporary index. If a tuple is in the index, it
has already been processed in some of the previous bulks. The remaining tuples
are shipped to the remote site for query fragment execution as before. Next, new
entries are added to the index from the returned result. Finally, a join between
the input bulk and the index is performed as in the SJA. A comparative execution
of SJMA in the same scenario as for the PCA example is presented in Table 2.
Here, the second bulk is reduced to one tuple before shipping to DB1, since the
anti-join eliminates the two tuples present in the first bulk.

The size of the index in SJMA is proportional to the number of distinct
tuples in the outer collection. The algorithm can be used as a filter even in the
case when the whole index is too big to fit in the memory. When the memory
limit is reached, new entries replace old entries using some replacement criteria.



314 V. Josifovski, T. Katchaounov, and T. Risch

. . . . 

. .
 . 

. 
Pr oject Duplicate

Removal
Anti-semi-join

Deproxify
 OI Ds

Project Equi-j oin
Update 
I ndex

Proxify 
OIDs

Temp.
Index

Join  Operator Join  r equest handler  

Materialized bulk from the input

output

1 2 3 4

891011

Destr ingify
OIDs

Str ingify
 OIDs

5

7

Execute
 SF

6

Fig. 2. Streamed semi-join with a temporary index

Table 2. Example execution of the semi-join with materialized index algorithm

r va
“T” 5

b1 “V” 4
“K” 5
“M” 3
“L” 5

b2 “M” 2
“G” 4
“Y” 4

πKS−→

va
5

b1 4
5
3
5

b2 2
4
4

dup.
rem.−→

va
5

b1 4
3
5

b2 2
4

anti
semi
join−→

va
5

b1 4
3

b2 2

to DB1−→ . . .

r
b1 “M”
b2 “M”

πRS←−
r va

b1 “M” 3
b2 “M” 2

equi-
join←− �

index
update←−

tmp
false

b1 false
true

b2 true

from DB1←− . . .

SJMA does not add substantially to the cost of the SJA, while it offers the
possibility for performance improvements. In fact, it reduces to the SJA in the
case when the whole input is contained in only one bulk.

3.2 Ship-In Join Method

Unlike the previous two algorithms where the remote query fragment is executed
using parameters from the tuples of the intermediate result, with the ship-in join
method no intermediate result is shipped to the remote site. Consequently, the
query fragment is executed without parameters. This has two effects:

– Since the remote query fragment is executed once only, it may reduce the
number of accesses to the data source.



Evaluation of Join Strategies for Distributed Mediation 315

– The result size may increase since instead of a semi-join of the query fragment
result and the intermediate result, the whole query fragment result is sent
to the client to be joined there.

While the reduction of the data source accesses may improve the performance,
the increased volume of the data shipped and stored in the mediator are the
possible performance disadvantages of this algorithm. The algorithm is inappli-
cable when the query fragment result is too big for the mediator resources. This
is also the case when the query fragment contains predicates representing meth-
ods/programs in the data source that require parameters to be supplied from
the mediator. With the ship-out method, when there are sufficient resources, the
materialized index can persist between the execution of the algorithm for differ-
ent bulks, reducing further the query processing time. This case corresponds to
hash join algorithms where an index is built for the inner relation.

4 Performance Measurements

In the two scenarios used in the experiments the data source was an ODBC
data source. We performed experiments using both Microsoft Access ODBC and
IBM DB2 ODBC drivers with no significant differences in conclusions. Where
not specifically indicated, the measurements use the Access ODBC driver.

In the first scenario, we deployed an Amos II server at the same workstation
as the source. This server wrapped the source and exported it to the client medi-
ator running on another Windows NT workstation. We present test results using
this scenario and two different network connection speeds between the worksta-
tions: a 115Kb ISDN connection over the public telephone network in Sweden;
and a 100Mb departmental LAN. We also varied the speed of the workstation
that hosted the client mediator. In one experiment we used a 233 MHz, 32Mb
RAM PC, and in the other a 600 MHz, 256Mb RAM PC. In the second sce-
nario the data source was accessed directly from the client mediator through the
ISDN network connection using DB2’s ODBC interface. In this case the joins
are executed one tuple at a time. We also compared the effects of different bulks
sizes on the query execution time.

The inner collection is obtained from a table stored in the ODBC data source.
The table consisted of three columns: an integer primary key ID, and two tex-
tual columns A and B of fixed length strings with sizes 10 and 250. The outer
collection was stored in the client mediator, where it simulated an intermediate
result. During the execution, the outer collection is bulked and streamed into
the join algorithm one bulk at the time. Both the outer and inner collection had
the same attributes.

Figure 3 shows the results of the execution of the three join algorithms from
the previous section using a 233 MHz Windows NT workstation as a client and an
ISDN connection to the server computer. The X axes in the graphs show the sizes
of the outer collection in percentage of the size of the inner that always contains
30000 tuples; the Y axes marks query execution times in seconds. The outer
collection is scaled from 17% to same the size as the inner. In these experiments



316 V. Josifovski, T. Katchaounov, and T. Risch

0

50

100

150

200

250

0 20 40 60 80 100

project-concat
ship-in
SJMA

(a) Whole result

0

20

40

60

80

100

120

0 20 40 60 80 100

project-concat
ship-in
SJMA

(b) First 1024 tuples

0

50

100

150

200

250

0 20 40 60 80 100

project-concat
unique
20%
50%
75%
all same

(c) SJMA with different percent-
age duplicates

Fig. 3. Execution times when varying the outer collection size, ISDN, 233 MHz PC

the outer collection contained 20% duplicates. Each tuple of the outer matches
exactly one tuple of the inner. The graph on the left compares the execution
times for a complete evaluation of the join operation. The graph in the middle
compares the times to emit the first 1024 tuples. This coincides with he bulk
size used to execute the query. The graph on the right compares the SJMA with
PC for different percentages of duplicates in join columns of the collections.

We first analyze the execution times for the complete join operation. Since
the inner collection has constant size, the time spend in the Amos II server of
the inner and the network time are constant for the execution of the ship-in algo-
rithm. The only increase of execution time is noted in the client: from 8 seconds
for a 5000 tuple outer collection, to 16 seconds for a 30000 tuple outer collection.
This is due to the increase of the number of index searches. Nevertheless, this
increase in negligible in comparison to the total query execution time.



Evaluation of Join Strategies for Distributed Mediation 317

Table 3. Query execution time distribution, ISDN, 233 MHz PC

Time distribution
Client Server Source Access Net.

Ship-in 10% 1% 4% 85%
Ship-out, PC 5% 3% 43% 49%
Ship-out, SJMA 7% 3% 42% 48%

The ship-out algorithms show performance that is linear to the size of the
inner collection, outperforming the ship-in algorithm until the outer is about
50% of the inner. SJMA performs better than the PC algorithm. Figure 3c com-
pares the algorithms for different percentages of duplicates. The PC algorithm
performs exactly the same, regardless of the data distribution. SJMA improves
as the number of duplicates of the join columns increases. Note that even with-
out duplicates, the performance difference of these two algorithms is small. This
shows that in main-memory based mediator systems, the penalty of the addi-
tional steps of the SJMA is low.

Table 3 shows the portions of the time spent in the individual system compo-
nents. The data source access time includes the time spent in the ODBC interface
and the data source. The main portion of the execution of the ship-in algorithm
executed over ISDN is spent on shipping the inner to the client side, which was
consistently around 85% of the query execution time. We can also note that,
due to the main-memory architecture of Amos II, the index build time in the
client is relatively small, around 5% of the whole execution time. The first tuple
is not emitted until the index for the inner is finished, which is after 95% of the
processing time. This makes this algorithm unsuitable for top-N queries.

The ship-out algorithms spend less time on the network, but more in access-
ing the data source. They also emit the first tuple much faster than the ship-in
algorithm (Fig. 3b). The experiments show here the time to emit the first 1024
tuples. When the bulking factor is less than 10, the first tuple is emitted af-
ter less than a millisecond. Furthermore, the bulking factor also determines the
smoothness of the flow of the results. Smaller bulking factor will allow smoother
flow of the results to the application.

Table 4 compares the effect of the distributed Amos II architecture for the
ship-out algorithms. First we used SJMA to access a remote IBM DB2 data

Table 4. Direct access to an ODBC source and through Amos II servers

outer/inner
Inner size/outer size 17% 33% 66% 100%
through Amos II, all tuples 58 115 245 358
ODBC direct, all tuples 2769 5059 8552 12799
through Amos II, B=1024, first tuple 14 15 15 15
through Amos II, B=1, first tuple 0.7 0.72 0.68 0.71
ODBC direct, first tuple 1.1 0.9 1.2 1.04



318 V. Josifovski, T. Katchaounov, and T. Risch

Table 5. Query execution time distribution, 100Mb LAN, 233MHz PC

Time distribution
Client Server Data source acc. Net.

Ship-in 67% 7% 22% 4%
Ship-out, PC 8% 5% 86% 1%
Ship-out, SJMA 12% 5% 82% 1%

source using DB2’s ODBC interface over an ISDN connection. Due to the au-
tonomy of the data sources we assume that it is not feasible to materialize
intermediate results in the sources. Even if this was possible, due to the disk
based nature of the DBMS, we could not expect a comparable execution time as
with the main-memory storage used in Amos II. Therefore the join must be per-
formed one tuple at a time over the remote ODBC. However, when the source is
accessed through an Amos II server located on the same computer as the source,
the join between the client and server mediators is executed in a bulked man-
ner, using only the local ODBC connection between the server mediator and the
source, leading to performance improvements of orders of magnitude.

The time to emit the first tuple when the bulking factor is 1024 is notably
greater when the processing is done through an Amos II server. This actually
represents how long it takes to emit the first 1024 tuples. If fewer tuples are
required, a smaller bulking factor leads to better performance for the top-N
queries when an intermediate Amos II server is used. Even when the bulking
factor is 1 we can note that the use of an intermediate Amos II yields better
performance than accessing the source directly, due to communication protocol
differences. To achieve the best performance, the bulking factor should match
the number of tuples required immediately.

Figure 4 and Table 5 illustrates join execution time on the same client com-
puter connected with a 100Mb fast LAN to the data source. We can note that
the curves have similar shapes, while the scale is different. The network cost is
eliminated for almost all of the algorithms. In this executions most of the time
is spend in the data source (parameterized and unparameterized query execu-
tion) and in the client for the ship-in algorithm (index build-up and join). We
can also note that when the whole join result is required the ship-in algorithm
outperforms the ship-out in almost all the cases. When the first-N tuples are
required, however, the ship-out algorithms are more efficient. For the first 1024
result tuples the difference is about 50%. If the number of requested result tuples
is smaller, the difference can be a couple of orders of magnitude. We have also
varied the client computer from a workstation to a notebook. We noted that
the return time for the first tuple is almost constant for the ship-out algorithms
regardless of the power of the client computer. This can be explained by the fact
that in the case of ship-out algorithms, the server uses the larger share of the
workload than with the ship-in algorithms.



Evaluation of Join Strategies for Distributed Mediation 319

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

project-concat
ship-in
SJMA

(a) Whole result

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

project-concat
ship-in
SJMA

(b) First 1024 tuples

Fig. 4. Join execution times for different outer collection sizes in percentage of the
inner size, 100Mb LAN, client 233MHz PC

5 Related Work

The System R* project [14] is one of the first distributed database prototypes.
In System R*, both ship-in and ship-out strategies are examined. In [15] a disk-
based ship-in strategy (named ship-whole) is implemented with a disk based
b-tree index. This type of implementation leads to considerably different results
where the ship-out method always outperforms ship-in.

Disk-based semi-join algorithms are described in [1,2,5,14]. A sort-merge join,
bloom filter semi-join, and sort-based semi-join are evaluated in [15] for a dis-
tributed database environment. A bloom filter phase can be added to the ship-
out algorithms described in this paper. Nevertheless, this would incur additional
query processing overhead and possibly shipping of some extra tuples of the in-
ner collection. Bloom filter strategies cannot be used with sources that cannot
enumerate the extent of the inner collection.

Most of the mediator frameworks reported in the literature (e.g. [7,16,19])
propose centralized query compilation and execution coordination. In [3] it is in-
dicated that a distributed mediation framework is a promising research direction,
but to the extent of our knowledge the results in this area are sketchy without
experimental support. The protocols for execution of joins between data in dif-
ferent sources are in most cases based on retrieving the data from the sources
and assembling the results in the mediator [16,19]. In the DIOM project [13],
a distributed mediator system is presented where the query execution is per-
formed in two phases: subquery execution and result assembly. The dataflow is
only from the sources to the mediator.

The Garlic mediator system [7] is the only mediator system known to us
that supports ship-out join strategies. The bind join in Garlic sends parameters
to the sources as single tuples of values. In Amos II the data sources are also
accessed one tuple at the time, but the distributed architecture allows for using
bulked protocols over high latency lines between Amos II servers to avoid most



320 V. Josifovski, T. Katchaounov, and T. Risch

of the processing cost. A Garlic wrapper that has two components, one local and
one remote, could achieve the benefits of the approach described in the paper.
Finally, join methods where bulk shipping is combined with hashing are not
applied in Garlic.

6 Summary and Conclusions

An efficient data integration system needs to be able to adapt to different envi-
ronments by using different algorithms. The algorithms presented in this paper
allow for balancing the workload between the client and the server, and for differ-
ent network use patterns that give wide range of options over different hardware
platforms.

The experimental results showed that for a complete query answer the ship-
in algorithms generally outperform the ship-out algorithms over fast networks.
Over slow networks and with very slow sources, the ship-out algorithms can give
orders of magnitude better performance than ship-in since ODBC over TCP/IP
calls are executed one tuple at a time while bulks of tuples are shipped between
the distributed mediators. For top-N queries where N is considerably smaller
than the result size, the ship-out algorithms with bulking factor N give the best
performance over all the range of hardware and network connections used in
the experiments. These outperform the ship-in algorithms by a few orders of
magnitude. Although the bulking factor greater than 1 provides benefits, too
large bulk sizes lead to reduced query execution efficiency.

In our environment, where the index operations are main-memory based and
relatively cheap, the penalty of SJMA (the Semi-Join with Materialized index
Algorithm) is small and it always performs nearly as well, or better than PCA
(the Project-Concat Algorithm). Nevertheless, PCA uses less memory and could
be much more efficient in memory-limited mediators. A compromise between
these two algorithm is the SJMA with a limited size temporary index that de-
generates to a SJA when the temporary index size is 0. Finally, if simplicity of
implementation is considered the PCA is the algorithm of choice.

Placing an mediator server close to the source allows for bulked execution of
the protocols that might change the query execution time by orders of magni-
tude, especially in networks with high latency. In cases when the sources lack
filtering capability, the mediator server can also locally filter the query fragment
result and reduce the communication cost even more.

A topic of our current work is a strategy to dynamically select between the
proposed algorithms during run-time. Statistics collected during the execution
can be used to determine if the default choice was the best one. Another open
issue is a method to determine the optimal bulking factor in a multi join query,
by taking in account the tuple sizes, join selectivities and the buffer pool size.



Evaluation of Join Strategies for Distributed Mediation 321

References

1. P. Apers, A. Hevner, and S. Yao: Optimization Algorithms for Distributed Queries.
IEEE Transactions on Software Engineering, 9(1), 57-68, 1983

2. P. Bernstein and D. Chiu: Using Semi-joins to Solve Relational Queries. Journal
of ACM 28(1), 25-40, 1981

3. W. Du and M. Shan: Query Processing in Pegasus, In O. Bukhres and A. El-
magarmid (eds.): Object-Oriented Multidatabase Systems. Pretince Hall, 449-471,
1996.

4. G. Fahl and T. Risch: Query Processing over Object Views of Relational Data.
The VLDB Journal, Springer, 6(4), 261-281, 1997.

5. P. Bernstein, N. Goodman, E. Wong, C. Reeve, J. Rothnie Jr.: Query Processing
in a System for Distributed Databases (SDD-1). ACM Transactions on Database
Systems (TODS), 6(4), 602-625, 1981

6. G. Graefe and W. J. MCKenna: The Volcano Optimizer Generator: Extensibility
and Efficient Search. 12th Data Engineering Conf. (ICDE’93), 209-218, 1993.

7. L. Haas, D. Kossmann, E.L. Wimmers, J. Yang: Optimizing Queries across Diverse
Data Sources. 23th Intl. Conf. on Very Large Databases (VLDB’97), 276-285, 1997

8. V.Josifovski and T.Risch: Functional Query Optimization over Object-Oriented
Views for Data Integration. Intelligent Information Systems (JIIS) 12(2-3),
Kluwer, 165-190, 1999.

9. V.Josifovski and T.Risch: Integrating Heterogeneous Overlapping Databases
through Object-Oriented Transformations. 25th Intl. Conf. on Very Large
Databases (VLDB’99), 435-446, 1999.

10. V. Josifovski and T. Risch: Query Decomposition for a Distributed Object-Oriented
Mediator System. To appear in J. of Distribued and Parallel Databases, Kluwer,
2001.

11. E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, and M. Ganesh: Myriad: Design
and Implementation of a Federated Database System. Software - Practice and
Experience, Vol. 25(5), 553-562, John Wiley & Sons, May 1995.

12. H. Lin, T. Risch and T. Katchanounov: Adaptive data mediation over XML data.
To appear in J. of Applied System Studies (JASS), Cambridge International Science
Publishing, 2001.

13. L. Liu and Calton Pu: An Adaptive Object-Oriented Approach to Integration and
Access of Heterogeneous Information Sources. Journal of Distributed and Parallel
Databases 5(2), 167-205, Kluwer Academic Pulishers, The Netherlands, 1997.

14. G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger and P. Wilms:
Query Processing in System R*. In W. Kim, D. Reiner, D. Batory (eds.): Query
Processing in Database Systems, Springer-Verlag, 1985.

15. L. Mackert and G. Lohman: R* Optimizer Validation and Performance Evaluation
for Distributed Queries. In M. Stonebraker (ed.): Readings in Database Systems,
Morgan-Kaufmann, CA, 1988

16. F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac: Dynamic Query
Optimization in Multidatabases. IEEE Data Engineering Bulletin, 20(3), 38-45,
1997.

17. T. Risch and V. Josifovski: Distributed Data Integration by Object-Oriented Me-
diator Servers. To appear in Concurrency - Practice and Experience J., John Wiley
& Sons, 2001.



322 V. Josifovski, T. Katchaounov, and T. Risch

18. M. Roth, F. Ozcan and L. Haas: Cost Models DO MAtter: Providing Cost Infor-
mation for Diverse Data Sources in Fededrated System. 25th Intl. Conf. on Very
Large Databases (VLDB99), 599-610, 1999.

19. A. Tomasic, L. Raschid and P. Valduriez: Scaling Access to Heterogeneous Data
Sources with DISCO. IEEE Transactions in Knowledge and Data Engineering,
10(5), 808-823, 1998



An RMM-Based Methodology for Hypermedia
Presentation Design

Flavius Frasincar, Geert Jan Houben, and Richard Vdovjak

Eindhoven University of Technology
Eindhoven, The Netherlands

{flaviusf,houben,richardv}@win.tue.nl

Abstract. Due to the rapid growth of the Web, there is an increasing
need for methodologies that support the design of Web-based Informa-
tion Systems (WIS). After investigating the application of existing hy-
permedia design methodologies in the context of automated hypermedia
presentation design we propose a specification framework for this con-
text. The framework considers the possibility of dynamically gathering
information from a collection of structured, but also possibly heteroge-
neous sources (relational or object-oriented databases, XML repositories
etc.). The methodology associated with the framework shows two levels
of abstraction: the logical level, and the presentation level. At the logical
level the application diagram captures the design of slices, thus specifying
the content related grouping of data elements and their relationships. At
the presentation level, the presentation diagram bridges the logical level
and the actual implementation by specifying how the design of slices is
translated into hypermedia mechanisms, e.g. hyperlinks.

1 Introduction

From its introduction in the early 90’s the World Wide Web (WWW) is in a
continuous development. Its rapid expansion results in an increasing number
of Web-based Information Systems (WIS) [3] being developed, especially with
sources that contain frequently changing information such as databases (rela-
tional or object-oriented databases, XML repositories etc.). This leads to the fact
that there is a higher need to automate, at least partially, the design process of
hypermedia presentations as used in a WIS. Although there are methodologies
like Relationship Management Methodology (RMM) [1] and Object Oriented
Hypermedia Design Methodology (OOHDM) [2], these methodologies have been
originally developed for a manual hypermedia design process, they are not par-
ticularly well-suited in the context of automated hypermedia design.

RMM focuses on highly structured applications with high information volatil-
ity. Moreover, it provides guidelines that can facilitate the automated design
process of hypermedia applications. RMM is based on the popular Entity Rela-
tionship (E-R) model.

These characteristics are significant for our target application area where
sources contain dynamical information. RMM has a specification at the logical

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 323–337, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



324 F. Frasincar, G.J. Houben, and R. Vdovjak

level, which groups presentation issues (e.g. navigational links) with semantical
issues (e.g. slice attributes). Besides, it lacks a proper specification at the pre-
sentation level. In this paper we argue that the separation in two distinct levels
is useful and we address them both in the context of the proposed framework.

The results of this research will be exploited in the HERA [12] project that
investigates software architectures for the generation of presentations for (semi-
structured) data retrieved from heterogeneous data sources. In order to exper-
iment with the proposed methodology a prototype has been built. The proto-
type uses XML to store the data and XSL to specify transformations between
consequent steps. Similar model-driven Web systems inspired by Hypermedia
Design Methodology (HDM) [7] were developed in Autoweb [6] (uses relational
databases for data storage) and WebML [5] (uses XML for data storage) projects.

Part of this work is also embedded in the Dynamo project, in which Eind-
hoven University of Technology collaborates with Philips and CWI, both in the
Netherlands. The Dynamo project targets the (semi-)automatic generation or
design of multimedia presentations. Characteristic for the generation process is
the support for adaptation.

As results from [4], [10] show, adaptation can be specified by distinguishing
the domain model, the user model, and the adaptation model. The last model
describes the actual adaptation being performed (based on the assumed knowl-
edge of the user inferred from the user model). In terms of this project it means
that conditions are specified on the existence of objects that are part of the
presentation.

2 RMM

RMM [1], [11], [13], [14], [15] proposes a sequence of steps that have to be followed
in the design process. For each step there are design guidelines for the designer
or builder of the application. Figure 1 depicts the RMM steps that are reused
in the proposed framework.

Requirements
    Analysis

        E-R
      Design

  Application

     Design

. . .

Fig. 1. RMM design methodology

The first design step is to represent the application domain using traditional
E-R modeling techniques.

In the second step, the E-R model is enriched with the concepts of m-slices
and relationships to build a diagram that describes the application. M-slices



An RMM-Based Methodology for Hypermedia Presentation Design 325

[13] are created by grouping together attributes from the E-R diagram; this
can be done hierarchically using previously defined m-slices: the ‘m’ comes from
‘Matreyshka’, the nested Russian doll, suggesting the possibility to nest slices in
one another. In the rest of the paper we will use the term slice instead of m-slice.
The most simple type of m-slice is an attribute ensuring thus the uniformity of
the hierarchical slice model.

3 Methodology

We developed a specification framework based on RMM to support the automa-
tion of a hypermedia presentation design. Figure 2 illustrates the methodology
related to this framework.

Although requirements analysis, E-R diagram (domain analysis), and imple-
mentation are important phases in the software engineering life cycle they are
beyond the scope of this paper.

The arrows in Fig. 2 show the sequence of steps in the process1. Our method-
ology focuses on the design steps shown in the shaded area of Fig. 2: platform
independent application design, platform dependent application design, and pre-
sentation design.

The artifacts of each design step in the order in which they appear in the
methodology are:

– E-R diagram
– platform independent application diagram
– (platform dependent) application diagram
– presentation diagram

A platform independent application diagram presents common information
of application diagrams that is going to be displayed regardless of the platform.
A platform dependent application (also referred as application diagram) takes
into consideration a particular hypermedia platform.

Requirements
    Analysis

        E-R
      Design      Design

   Plat. indep.
Application

Design
  Application

Plat. dep.
Presentation 

Design
Implementation

Logical level Presentation level

Fig. 2. Design methodology

In the methodology we distinguish two levels, the logical level and the pre-
sentation level, based on the ‘separation of concerns’ principle.
1 It is possible to have feedback loops in the process.



326 F. Frasincar, G.J. Houben, and R. Vdovjak

3.1 Logical Level

At the logical level the methodology is concerned with providing data and re-
lationships/access structures of the information to be presented. Related in-
formation is grouped together into meaningful presentation units (slices). Slice
relationships provide a means to access information belonging to different units.
The logical level is based on the E-R model, in the sense that it exploits the
entity structure (attributes) and the relationships among them.

Relationships derived (based on relation’s transitivity) from the E-R model
are taken into account to minimize the number of slice relationships that need
to be traversed in order to reach a meaningful item related to a presentation
unit.

The logical level bridges the data source level and the presentation level. The
designer is concerned with mapping elements from the data sources (at abstract
level entities from E-R model) to slices.

Besides structuring information the notion of slice facilitates reuse. A slice
can be reused at application level or even among applications if the applications
share the same data model. At application level a previously designed slice can
be nested in another slice so that the design effort involved in a new slice creation
is considerably reduced.

The logical level is expressed in the application diagram which will be de-
scribed in Sect. 4.

3.2 Presentation Level

The design choices made at the logical level yield a presentation specification
in terms of slices. Such a specification however, stays at the logical level and
does not describe the presentation in detail. It does not say anything about
how presentation elements should be organized with respect to each other or
with respect to the screen; it says neither when, nor in which order presentation
elements should appear. These kinds of design decisions were usually made ad
hoc during the implementation phase, though they clearly do not belong there.

The presentation level bridges the logical level and the actual implementa-
tion. Complementary to the logical level, where the designer is concerned with
organizing the overall presentation structure and identifying what attributes
from entities are to be included in slices, at the presentation level the designer
specifies how and when the identified slices should be displayed.

The presentation level should not be considered only as a detailed logical level
but rather as a view from a slightly different angle. During this process, slices
from the logical level are mapped into regions and design decisions are made
to specify a concrete way (navigational, spatial, and temporal) [9] how rather
abstract slice relationships will appear in the presentation. In other words the
designer specifies in a conceptual way the navigation, layout, and timing of the
presentation.

The presentation level is expressed by means of the presentation diagram
which will be described in Sect. 5.



An RMM-Based Methodology for Hypermedia Presentation Design 327

4 Application Diagram (AD)

The application diagram is used to model at the logical level the hypermedia
application [15]. An application diagram consists of slices and the relationships
among them.

In order to illustrate the framework specification an example of a virtual Web
site that presents information about a set of real-estate agencies is used.

Figure 3 describes the underlying E-R diagram without attributes. The appli-
cation domain is simplified in order not to burden the reader with too many ap-
plication details. In the example we introduce four entities, house agency, house,
neighbourhood, and room, and three relationships, expressing that a house is
owned by a house agency, it is placed in a certain neighbourhood, and contains
several rooms. All relationships are of type one-to-many.

contains

in_neighbourhood

is_owned

house

room

neighbourhood

agency

Fig. 3. E-R diagram

4.1 Slices

The application diagram is based on the concept of slice, which groups together
attributes and possibly other slices. Each slice belongs to an entity and it can also
contain attributes or slices from other entities. Slices provide flexible aggregation
and contextual navigation, useful features for intelligent Web navigation.

Slices are linked together with slice relationships. Access structures (e.g. in-
dex, tour, indexed guided tour) are used to build complex internal slice struc-
tures. Relationships/access structures have associated conditions2 that show
what slice instances are to be connected.
2 A user adaptation module can use these conditions in order to inhibit or to allow

certain links based on the knowledge a user has regarding a certain concept.



328 F. Frasincar, G.J. Houben, and R. Vdovjak

The application diagram consists of all the designed slices and provides a
global view of the application.

Figure 4 presents a slice (as it is in RMM) which is an element of the larger
application diagram.

full_address

plan

house

neighbourhood

infoinfo
Index

room

name

overview

in_neighbourhood is_owned contains

address

neighbourhood room

name

agency

Fig. 4. Slice

4.2 Slice Relationships

Slices are linked together by relationships. A slice relationship associates slices
(belonging possibly to different entities) some being sources and others targets.
A simple slice relationship connects just two slices while a complex slice relation-
ship connects multiple slices. Each slice relationship can be have conditions (logic
predicates) that determine which instances of an entity are to be accessed. Con-
ditions support user and platform adaptation. Figure 5 (left) presents a simple
slice relationship.

Source

AND

OR

Target

OR

AND

Source

AND

OR

Target

OR

AND

Source

AND

OR

Target

OR

AND

Slice relationship

condtion

Fig. 5. Slice relationship. Sources and targets for slice relationship



An RMM-Based Methodology for Hypermedia Presentation Design 329

Figure 5 (right) depicts the possible types of sources and targets of a slice
relationship. We distinguish the following cases:

– simple source/target
– multi-and source/target, all sources/targets must be triggered/invoked
– multi-or source/target, at least one of the sources/targets is triggered/invoked

One can observe that the proposed notation has as consequence that an ‘OR’
for sources has the same graphical representation as an ‘AND’ for targets (and
the other way around).

The RMM slice relationship is a navigational relationship (hyperlink) be-
tween two slices. In our application diagram a slice relationship represents nav-
igational, spatial, or temporal relationships at a higher level of abstraction. In
RMM, slice relationships are always crossing the physical boundaries of a slice.
In the proposed framework we allow slice relationships to be embedded in one
slice (we call them internal slice relationships). In the case of internal slice rela-
tionships the source slice can vanish or can be preserved. Figure 6 presents the
associated graphical notation for the two cases.

Vanishing source relationship Preserving source relationship

Fig. 6. Vanishing source and preserving source slice relationship

Figure 7 presents a slice diagram that uses the newly introduced concepts of
internal relationships and preserving source relationship. The empty slice called
‘h n’ is an anchor for two internal relationships (both the anchor and the target
belong to the more general ‘description’ slice). This is an example of relationships
that are preserving their source (the bullet anchored on the empty slice). That
means that when such a relationship is traversed, the description slice context
is kept and the ‘h n’ anchor is still present.



330 F. Frasincar, G.J. Houben, and R. Vdovjak

Index

h_n

Index

name

neighbourhood

name

address

agency

description

ownshouse_in_neigh.

info

house

address

neighbourhood

overview

house

h_n = houses and neighbourhoods

∀

Fig. 7. Slice

5 Presentation Diagram (PD)

Similarly as the logical level is described by means of an application diagram,
the presentation level is described by a presentation diagram. A presentation
diagram consists of presentation elements called regions and the relationships
among them. The presentation diagram specifies how the regions are organized
from the navigational, spatial, and temporal point of view. Figure 8 shows an
example of a presentation diagram composed from several regions.

agent.name agent.address
contact

Neghbourdoods"
"Houses and

description

ndx_neighb ndx_house

h_n

Fig. 8. Presentation diagram

During the process of creating the presentation diagram, the slices introduced
at the logical level are mapped to regions and possibly new regions are introduced
(it is not always a one-to-one mapping, some slices can be split to more regions
and vice versa).

Subsequently, slice relationships from the logical level are materialized with
navigational, spatial, or temporal relationships.



An RMM-Based Methodology for Hypermedia Presentation Design 331

5.1 Regions

Regions, together with the relationships that interconnect them, are the main
building blocks of a presentation diagram. A region is defined as a collection of
attributes and possibly other regions. This recursive definition facilitates nested
regions thus providing a means to reuse regions in a component-like manner.
Every region is associated with an area where it is displayed. An area is of a
rectangular shape having as properties its dimensions and location. When we
refer to a region we mean both the region and its associated area.

As mentioned before, a region contains attributes. Attributes are properties
that relate concrete values (from a given domain) to the region. Attributes come
in two flavors: entity attributes and constant attributes. An entity attribute ac-
quires its value from the entity to which it is mapped and thus it changes its
value throughout the presentation. A constant attribute, as its name suggests,
does not change its value; the value is determined beforehand and stays con-
stant. Different syntax is used to differentiate the two types. Graphically, entity
attributes are depicted as solid line ovals and constant attributes as dashed line
ovals as shown in Fig. 8.

Note that though the concept of region is similar to the slice concept, there
are some differences:

– A slice is always associated with an entity that owns it, while a region, as
a presentation element, is not owned by an entity; it is sufficient that each
entity attribute includes the information from which entity it comes from.

– A region has an associated area where it is displayed.

5.2 Region Relationships

All aspects of the abstract concept of slice relationships introduced at the logical
level are used also at the presentation level with the difference that the sources
and the targets are regions, not slices. Moreover, three instances of this concept
are introduced: navigational, temporal, and spatial relationship. Each of them is
having a different syntax and different semantics associated with its realization.

Graphically, relationships are depicted as arcs with arrows. Similar to the
logical level, an arc starting with a solid circle indicates a persistent (not van-
ishing) source region. The graphical style of the arc indicates the type of the
relationship: navigational, temporal, or spatial as depicted in Fig. 9.

Spatial

Navigational

Temporal

Fig. 9. Types of relationships



332 F. Frasincar, G.J. Houben, and R. Vdovjak

Navigational. The navigational relationships were introduced to represent the
classical hyperlinks (so called ‘click-able’ links). After the user clicks on the
source region the target region is invoked and the source region either vanishes
or stays, depending on its type.

There is a possibility to guard the execution of the link with a condition
(the link is followed only if the condition is satisfied) and the possibility to
specify an event when the link should be followed. The default event for nav-
igational links is the mouse-click event, but the designer can choose different
events (e.g. mouse-over). Navigational links are graphically depicted with solid
arcs.

Temporal. Temporal relationships were introduced in order to express the no-
tion of time in the specification of multimedia presentations, while the original
RMM was focused on hypermedia presentations (no notion of time). Tempo-
ral links can be used to describe both intrinsic delay (a duration of a video
or audio clip [8]) and presentation time (temporal links introduced by the de-
signer). There is a time-out event associated with every temporal relationship;
after the time elapses the relationship is realized (the destination region is in-
voked)3.

Although from semantic point of view the temporal relationships can be
considered similar to the navigational links we suggest to make a distinction
mainly because of the different nature of the two (navigational links require
some user interaction while temporal links do not).

Temporal links can be organized in parallel or sequential compositions. The
graphical syntax is rather intuitive; temporal links are graphically described with
dashed arcs.

A sequential composition is depicted as a chain of links with one starting
node (starting source region) and a chain where the destination region of one
link is the source region for the next link.

Two temporal relationships are considered to be in parallel composition if
they are not included in the same sequential composition. In other words what
is not sequential is parallel.

Figure 10 shows an example of three sequential chains (A*, B*, C*) which
are organized into a parallel composition and synchronized before they enter the
region D. Note that normally the starting region from a sequence is shown at
once (A1, B1) but it is also possible to specify a delay with respect to the top
region (C1).

3 The synchronization can sometimes introduce an additional delay (the time-out of
one ‘track’ elapses but it still has to wait for the other with which it is synchronized).



An RMM-Based Methodology for Hypermedia Presentation Design 333

A1 A2

B1 B2

C1

D
E1 E2

F1

Top

Fig. 10. Sequential and parallel composition with synchronization

Spatial. There are two reasons for introducing spatial links: the first is to pro-
vide a means of specifying the layout characteristics of a presentation. The second
reason is to facilitate the description of more complex presentation elements like
indices, guided tours etc. A spatial link describes a spatial relationship between
two regions. The meaning of the link orientation is that the link describes a
relative position of the target with respect to the source, the point of reference
always being the left upper corner. The semantics of spatial links is slightly dif-
ferent compared to the one of navigational and temporal links. The notion of
following a link is missing here, e.g. both the source and the target of a spatial
link are displayed at once provided the condition and the event associated with
the link permit so.

Spatial links are graphically depicted with dotted arcs.

5.3 Multi-dimensional Synchronization

Except of the synchronization of temporal relationships our framework offers also
multidimensional relationship synchronization where relationships of different
kinds are synchronized. This gives the designer the opportunity to specify new
types of dependencies among relationships. For example in Fig. 11 a navigational
link from the region ‘Text’ is synchronized with a temporal relationship coming
from the region ‘Audio’. The target region is invoked only after both events from
the involved relationships (mouse-click, time-out) occur.

Audio

Text

Fig. 11. Multidimensional relationship synchronization

5.4 Ordering of Relationships

A region with an entity attribute is instantiated during the presentation to sev-
eral regions with concrete values of the attribute.



334 F. Frasincar, G.J. Houben, and R. Vdovjak

In order to be able to specify relationships among these instances we intro-
duce the so-called self-relationships at the type level. Since there might be more
of such relationships needed to describe the desired presentation structure, there
must be a unique order in which they are applied. To facilitate this, the ordering
of relationships was introduced. In Fig. 12 we provide two examples to illustrate
this approach. Presentation diagrams are depicted on the left and the respective
screen renderings on the right.

Figure 12 (top) describes a bulleted index region. It consists of a region with
a constant attribute depicting the bullet (‘·’) right to which is positioned the
region ‘item’ containing the ‘N.name’ attribute. From this region there is a link
to the region called ‘info’ containing the ‘N.description’ attribute. The ‘bullet’
and the ‘item’ region are grouped together in the region called ‘enum’, which has
a spatial relationship (with the lower priority 1) to itself saying that the next
pair bullet-item will be placed below. In other words the constraint introduced
by this relationship is taken into account after applying the constraints from the
relationships that have the higher priority (0).

Figure 12 (bottom) describes a bookcase region. It consists of the ‘shelf’
region, which contains the ‘thumb’ region that has a navigational link to the
‘picture’ region and also a link to itself saying that the next thumb will be
placed to its right. This rule is applied until there is no room left in the shelf
(the horizontal dimension of the ‘shelf’ region). When the shelf is full we proceed
with the next one by applying the self spatial relationship of the ‘shelf’ region
which has the lowest priority (2).

info

N.description
Description1

Description1

Bookcase region

0

below

ndx_neighb

xy

item ...
Neighbourhood1
Neighbourhood2
Neighbourhood3

T2

H.picture

below

picture

right

xy

ndx_neighb

shelf

0

T1

2

T3

T4 T5 T6

T7 ...
1

enum

0

bullet

1

0

0

Bulleted index region

N.name

H.thumb

Screen rendering

Screen rendering

right

’   ’

Description1

Picture1

Fig. 12. Bulleted index region. Bookcase region



An RMM-Based Methodology for Hypermedia Presentation Design 335

6 User Adaptation

In our framework we try to address the (semi-) automatic generation and design
of multimedia presentations. Characteristic for the generation process is the
support of adaptation.

The system can adapt to the user by considering the user’s browsing behav-
ior. By observing the navigation behavior the system can infer (based on intelli-
gence specified by the application’s author) the user’s knowledge and adapt the
presentation on the basis of this assumed knowledge.

There is also adaptation to the platform the user is using (platform depen-
dence): if for example the system detects that the user is using a PC with a large
screen or a small hand-held device, then the system could adapt the presentation
to this platform.

Slices or slice relationships are available or accessible only after the conditions
hold. While the specification of the actual adaptation process is beyond the scope
of this paper (AHAM model from [10]), the concepts (in terms of AHAM) are
specified in this framework as slices and slice relationships. Hence, these slices
and slice relationships carry (in the conditions) part of the knowledge on which
the adaptation is based. In order to specify hypermedia presentations, especially
in the context of automatic design, it is necessary to describe which concepts
are part of the design. Our framework allows to specify exactly that.

7 Conclusions

The research described in this paper targets the support of automated hyper-
media presentation design (in the context of Web-based Information Systems).
Specifically, for applications involving data that change frequently, the design of
hypermedia presentations requires a structured approach. This paper discusses a
methodology that guides through the process of specifying the presentation gen-
eration process. The methodology is inspired by RMM and overcomes some of
RMM’s shortcomings for the application to automated presentation generation.
It also shows the specification techniques used in the steps of the methodology.

Our methodology distinguishes three steps in the design process. First, a
logical application design is made to organize the data elements at a logical
level, even independent of the platforms used for the presentation. Secondly,
at the logical level some of the specific details related to the platform that is
used are taken into consideration: this leads to a platform-dependent logical
application diagram. The third step in the process realizes the logical decisions
made in the first two steps, by carefully choosing representations for the different
constructs. At this level, the dimensions of hyperlink navigation, space and time
are included in the specification. This paper concentrates on the specification of
the different design decisions and illustrates them using the diagrams.

In further work we will extend these specification techniques with other con-
structs that allow for the specification of some of the other relevant details. In
the Dynamo project we are experimenting with different kinds of applications



336 F. Frasincar, G.J. Houben, and R. Vdovjak

such as the Electronic TV-Program Guide. In these experiments we learn how
different aspects play a role in the automated hypermedia presentation design
process. We aim at including more of these aspects in this specification frame-
work. One example relates to the use of constraints (rules) in the specification
of spatial relationships. Such constraints might not (easily) lead to a solution,
or even influence other design decisions (made earlier in the design process).
Other aspects relate to the combination of different kinds of relationships, or
the construction of ‘virtual’ slices or regions.

In the Dynamo project the adaptation is an important feature. The con-
ditions associated with slices and regions allow for implementing different as-
pects of adaptation, such as user adaptation (navigation) and platform adap-
tation. The Hera prototype is developed incrementally, adding new features to
the methodology enables further verifying whether this mechanism suffices in
concrete applications.

References

1. Balasubramanian, P., Isakowitz, T., Stohr, E.A. : RMM: A Methodology for Struc-
tured Hypermedia Design. Communications of the ACM, 38(8):33-44, August 1995.

2. Barbosa, S.D.J., Rossi, G., Schwabe, D.: Systematic Hypermedia Application De-
sign with OOHDM. Hypertext, 1996.

3. Bieber, M., Isakowitz, T., Vitali, F.: Web Information Systems. Communications
of the ACM, 41(7):78-80, July 1998.

4. Brusilovsky, P., De Bra, P., Houben, G.J.: Adaptive Hypermedia: From Systems to
Frameworks. ACM Computing Surveys, 31(4es), Article No. 12, December 1999.

5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9, 2000.

6. Fraternali, P., Paolini, P.: Model-Driven Development of Web applications: the Au-
toWeb system. ACM Transactions on Information Systems, 18(4):323-382, October
2000.

7. Garzotto, F., Paolini, P., Schwabe, D.: HDM - A Model-Based Approach to Hyper-
text Application Design. ACM Transactions on Information Systems, 11(1):1-26 ,
January 1993.

8. Bulterman, D.C.A., Hardman, Mullender, K.S.L., Rutledge, L., van Ossenbruggen,
J.: Do You Have the Time? Composition and Linking in Time-based Hypermedia.
Hypertext and Hypermedia, 1999.

9. De Bra, P., Houben, G.J.: Automatic Hypermedia Generation for ad hoc Queries
on Semi-Structured Data. Digital Libraries, 2000.

10. De Bra, P., Houben, G.J., Wu, H.: AHAM: A Dexter-based Reference Model for
Adaptive Hypermedia. Hypertext and Hypermedia, 1999.

11. Diaz, A., Isakowitz, T.: RMCase: A Tool To Design WWW Applications. Fourth
International World Wide Web Conference, 1995.

12. Houben, G.J.: HERA: Automatically Generating Hypermedia Front-Ends for Ad
Hoc Data from Heterogeneous and Legacy Information Systems. Engineering Fed-
erated Information Systems, 2000.

13. Isakowitz, T., Kamis, A., Koufaris, M.: Extending RMM: Russian Dolls and Hy-
pertext. HICSS, 1997.



An RMM-Based Methodology for Hypermedia Presentation Design 337

14. Isakowitz, T., Kamis, A., Koufaris, M.: Reconciling Top-Down and Bottom-Up
Design Approaches in RMM. Workshop on Information Technologies and Systems,
1997.

15. Isakowitz, T., Kamis, A., Koufaris, M.: The Extended RMM Methodology for Web
Publishing. New York University, 1998. Available online at
http://rmm-java.stern.nyu.edu/rmm/.



A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 338-351, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

Efficiently Mapping Integrity Constraints from 
Relational Database to XML Document1 

Xiaochun Yang, Ge Yu, and Guoren Wang 

Dept. of Computer Science & Engineering, Northeastern University 
Shenyang, 110004, P.R.China 

yangxc73@263.net {yuge,wanggr}@mail.neu.edu.cn 

Abstract. XML is rapidly emerging as the dominant standard for exchanging 
data on the WWW. Most of application data are stored in relational databases 
due to its popularity and rich development experiences over it. Therefore, how 
to provide a proper mapping approach from relational data to XML documents 
becomes an important topic. Integrity constraints are useful for semantic speci-
fication that plays the important roles in relation schema definition. The exist-
ing XML schema language does not define general constraints and maintaining 
method for integrity constraints. So how to use XML to express and maintain 
integrity constraints especially the advanced integrity constraints, e.g., general 
constraints of relational data is one of challenge research issues. In this paper, a 
novel mapping approach is proposed to map relation data to XML document 
with active nodes, XMLA, and extended DTD with constraints, DTDC. The abil-
ity to maintain integrity constraints makes our approach more effective than 
other approaches.  

1 Introduction 

With the explosive growth of the WWW, the requirement for sharing information 
becomes one of key problems. As a standard for exchanging business data on the 
WWW [1], XML should provide the ability of expressing data and semantics among 
heterogeneous data sources on the WWW. Therefore, transformation from relational 
data to XML data becomes the major research problem in the field of current informa-
tion exchanging, sharing and integration. 

Observe that the ID /IDREF(s) mechanism of DTD is too simple to express integ-
rity constraints [2]. If the integrity semantics are implicitly expressed only by 
ID/IDREF(s) attribute values, the complete semantics of relational data can not be 
captured in the mapped XML data. However how to express integrity constraints in 
XML is a very important research issue because they play the key roles in specifying 
semantics [3], maintaining data consistency [4,5], optimizing queries [6,7], and inte-
grating information [8-10]. Although XML Schema [11] identifies some commonly 

                                                           
1  This work is partially supported by the Teaching and Research Award Program for Out-

standing Young Teachers in Higher Education Institutions and the Cross Century Excellent 
Young Teacher Foundation of the Ministry of Education of China, the Natural Science Foun-
dation (69803004) of China. 



Efficiently Mapping Integrity Constraints from Relational Database         339 

 

recurring schema constraints and incorporates them into the language specification, it 
does not provide a suitable method to maintain the integrity constraints. An integrity 
constraint is a condition specified on a database schema to restrict the data that can be 
stored in an instance of the database. In the relational database, SQL is used to define 
integrity constraints including domain constraints, referential integrity constraints, 
and general constraints. 

A number of recent proposals aimed at transformation from popular databases to 
XML documents. The YAT system [10] developed by INRIA is a semistructured data 
conversion and integration system that adopts XML as a middleware model for wrap-
pers, mediators communicate data, structures and operations. IBM Almaden Research 
Center in the literature [12] characterized the solution space based on the main differ-
ences between XML documents and relational tables, studied on the mapping prob-
lem at data level and provided a significant performance benefit. Pennsylvania Uni-
versity in the papers [13,14] studied constraint implication problems, concerning path 
and type constraints, object identifier, and inverse reference. However, as we known, 
the existing researches have the following problems to be studied further. 
1. Literatures [12,13,14,15] only provided mapping approaches for referential integ-

rity constraints for object-oriented and relational database. While literature [14] 
mainly considered the issue of data level mapping rather than schema level or 
higher semantic level. 

2. Mapping Composite Keys and Composite Foreign Keys. The approaches [12-14] 
have another common problem that they provided mapping approaches only for 
simple keys and simple foreign keys, not for composite keys and composite foreign 
keys. 

3. How to provide a maintenance mechanism for integrity constraints in the mapped 
XML document is still an problem, e.g., mapping options for enforcing referential 
integrity constraints. In a relational database, if a referential integrity constraint is 
defined, any command executing on the relational database should be evaluated 
first. If the evaluation is false, the command will be rejected. However, all above 
approaches did not consider the enforcement of referential integrity constraints in 
the mapped XML document. 

4. Mapping General Constraints. General constraints are advanced constraints that 
they provide more flexibility to user to decide which operations should be executed 
to maintain consistency of relational data. By far, how to map general constraints is 
an still open problem and there is no suitable approach to solve it as the best of our 
knowledge. 

Relational database adopts DDL, subset of SQL, to define relation schemas, while 
XML uses DTD and XML Schema to describe structures of documents. DTD does 
not provide any more semantic constraints besides unary ID and IDREF(s) attributes 
to represent referential mechanism, so it is not sufficient to express and maintain 
integrity constraints in relational database. XML Schema does not define general 
constraints and maintaining method for integrity constraints. 

In order to provide an effective mechanism to solve the above problems, this paper 
considers the richness and complexity of integrity constraints, presents a Document 
Type Definition with Constraints(DTDC) and corresponding XML document with 
Active Nodes(XMLA), and designs a DTDC based mapping approach, named ICMAP 
to map relational data and its integrity constraints into XMLA document. DTDC is an 
extended DTD that is used to define the syntax and integrity constraints. XMLA is an 



340         X. Yang, G. Yu, and G. Wang 
 

 

XML document with active nodes. It conforms to DTDC definition whose instance 
still conforms to XML grammar. ICMAP only extends DTD, without changing the 
primary XML document instance. As for composite keys/foreign keys, in ICMAP we 
only change the constructing method for attribute values, reduce the scope and type of 
an ID/IDREF attribute by specifying key attributes. Based on XMLA, we provide a 
mechanism to transform different options to maintain referential integrity constraints, 
and map advanced integrity constraints such as table constraints and assertion. 

The main contributions of this paper are listed as follows. (1) ICMAP supports 
mapping for composite keys and composite foreign keys. (2) ICMAP provides docu-
ment with active nodes to maintain integrity constraints. (3) ICMAP provides indices 
for multiple keys in XML data. (4) ICMAP proposes an approach to maintain integ-
rity constraints on XML instances. (5) ICMAP presents mechanism to map general 
constraints. All the above characteristics make it remarkable than the other existing 
schema definition language [16]. 

The rest of the paper is organized as follows. Section 2 overviews the representa-
tion ability of relational databases and XML for integrity constraints. Section 3 pro-
poses DTDC and XMLA, and gives the architecture for mapping integrity constraints 
from relational data into XML data. Section 4 presents the ICMAP approach involv-
ing different rules to map basic table, keys, foreign keys and options for enforcing 
referential integrity constraints. Section 5 proposes mapping rules for general con-
straints and Sect. 6 gives the constraints reducing rules to optimize structure of docu-
ment. Finally, Sect. 7 concludes the whole paper. 

2  Overview Integrity Constraints in RDB and XML 

In relational databases, entities and relationships among entities are defined as flat 
table, and integrity constraints among data are established implicitly through SQL. In 
SQL-92 specification, integrity constraints include referential integrity constraints and 
foreign key constraints. Key constraints and foreign key constraints are classified as 
referential integrity constraints. General constraints is regarded as advanced con-
straints that they provide more flexibility to user to decide which operations should be 
executed to maintain consistency of relational data. Current relational database 
systems support such general constraints in the form of table constraints and 
assertion [17]. Table constraints are associated with a single table and are checked 
whenever that table is modified. In contrast, assertions involve several tables and are 
checked whenever any of associated tables is modified. 

Here is a simple example of teaching database. Char and integer distinguish the 
domain constraints of each attribute, primary key defines keys of each table, foreign 
key defines foreign keys referring to other tables. In the example, attribute ano is the 
primary key of table advisor, while ano field of table student is a foreign key and 
refers to table advisor. As we known, the insertions of student tuples that violate 
referential integrity will be rejected. And SQL-92 provides several alternative ways to 
handle the deletion/update of advisor tuples that violate referential integrity by 
choosing the four options including no action, cascade, set default, and set null. 

 
 



Efficiently Mapping Integrity Constraints from Relational Database         341 

 

Example 1. 

Create table advisor (ano char(10) NOT NULL, 
 aname char(20) NOT NULL, primary key(ano));  

Create table student (sno char(10) NOT NULL, 
 age integer, ano char(10), primary key(sno), 
 foreign key(ano) references advisor, 
 on delete cascade, on update no action); 

Different from relational databases, XML adopts a hierarchical format having arbi-
trary nested structures with a singleton root element, and uses XML Schema as the 
schema definition language, provides type definition, ID/IDREF(s), keys/foreign keys 
to support referential mechanism. Each element has a tag associated with it. An ele-
ment can have attributes and values or nested sub-elements. ID annotation indicates 
that the associated elements should be uniquely identified by it. IDREF(s) is/are (a) 
logic pointer(s) referring to the associated elements with same ID attribute value. ID 
and IDREF(s) are both based on unary attributes.  

Although ID/IDREF(s) are similar to keys/foreign keys in relational databases, 
they are insufficient to express some implicit semantics. XML Schema only supports 
key/foreign key constraints by using unique tag. It can not define general constraints 
and maintenance mechanism so far. And XML Schema is too rigid in the definition 
and language specification [16]. 

3  XML Documents with Active Nodes 

Definition 1 Active Node. An Active Node is an element node with the ability to 
evaluate the value of elements in an XML. Let the active node be eA, the expression of 
eA is: 

eA = <tag attribute-dcl> value </tag> 

The BNF statements of attribute-dcl are listed as follows: 

attribute-dcl := general-attr* active-attr* 
general-attr := ID-dcl* IDREF-dcl* IDREFs-dcl* 
active-attr := event-dcl {condition-dcl* action-dcl}+ 
event-dcl := “event =” <identifier>  
condition-dcl := “condition =” <identifier> 
action-dcl := “action =”<identifer>{“,”<identifer>}+ 

The keyword event, condition and action are used to describe the active nodes. 
They constitute an ECA rule, i.e., on event if condition then action. The values of 
event are basic operations on an XML, such as insert, delete and update. The keyword 
condition records the element types that will be checked. The values of action are 
Java functions that will be dynamically loaded and interpreted at the runtime. 

Definition 2 DTD with Constraints (DTDC). A DTDC is an extended DTD with 
constraints. A DTDC is denoted by (T, r, A, K, V, 7), where: 



342         X. Yang, G. Yu, and G. Wang 
 

 

� T records type definitions, including in-line and user defined data types. For 
each type 8�  T, let Ext(8) be a set of instances labeled by 8 in an XML 
document; 

� r is the element type of the root element in the XML document, r�  T; 
� A(8) records all attributes of type 8; 
� K is a partial function identifying attribute types in the XML document: 

� ��
�
�

T

A
8

8 {ID,IDREF, IDREFs, OP}. OP represents an active node; 

� V is a value constraint function Ext(8)�A(8), denotes that the values of A(8) are 
originated from Ext(8); 

� 7 is a set of basic XML constraints recording all kinds of constraints that can be 
mapped into XML document instances. 

Definition 3 ID Constraint. Suppose l� A(8), if�x,y� Ext(8)(x.l = y.l � x = y), then 
attribute l is an ID attribute of type 8. An ID constraint can be expressed as Formula 
(1). 

8.l �ID 8 (1) 

In XML documents, references are based on unary attributes, hence l� A(8). For-
mula (1) denotes that if 8.l�8, then for any l’9 l, we have 8.l’�: 8, i.e., l represents 
primary key of type 8. 

Definition 4 IDREF Constraint. Suppose l� A(8), l’� A(8’), 8’.l’�8’, if �x� Ext(8) 
�y� Ext(8’)(x.l=y.l’), the attribute l of type 8 is the IDREF attribute referring to type 
8’. An IDREF constraint can be defined as Formula (2). Clearly, if there is an IDREF 
constraint 8.l �R 8’.l’ in 7, constraint 8’.l’�ID 8’ must be true. 

8.l �R 8’.l’ (2) 

Definition 5 IDREFs Constraint. Suppose l� A(8), l’� A(8’), 8’.l’�8’, if �x� Ext(8) 
�Y9 Ext(8’)(x.l� Y.l’), the attribute l of type 8 is the IDREFs attribute referring to type 
8’. An IDREFs constraint can be defined as Formula (3). Similarly, if there is a 
IDREFs constraint 8.l �RS 8’.l’ in 7, constraint 8’.l’�ID 8’ must be true. 

8.l �RS 8’.l’ (3) 

Definition 6 Key Constraint. Suppose 8, sub8� T, sub8 is the subtype of 8, Formula 
(4) defines a key constraint that assert sub8 is a key of 8. 

8.sub8 �K 8 (4) 

Definition 7 Foreign Key Constraint. Suppose 8, sub8,81,sub81� T, sub8 is the sub-
type of 8, sub81 is the subtype of 81. If sub8 and sub81 have the same type, Formula (5) 
defines a foreign key constraint that assert 8.sub8 is a foreign key referring to 81.sub81. 

8.sub8 �FK 81.sub81 (5) 

The DTDC definition of Example 1 is listed as follows. 



Efficiently Mapping Integrity Constraints from Relational Database         343 

 

DTDC = T(r)={advisor*, student*} 
 T(advisors)={ano,aname) 
 T(students)={sno,age,ano} 
 T(advisors.ano)=string 
 T(advisors.aname)=string 
 T(students.sno)=string 
 T(students.age)=integer 
 T(students.ano)=string 
 A(advisor)=(no) 
 A(student)=(no,ref) 
 K(advisor.no)=ID 
 K(student.no)=ID 
 K(student.ref)=IDREF 
 7={advisor.ano�K advisor, student.sno�K student, 
 student.ano�FK advisor, student.no�ID student, 
 advisor.no�ID advisor, student.ref�R advisor} 

Definition 8 Document with Active Nodes (XMLA). An XMLA is an XML document 
having active nodes besides data nodes. An XMLA document (E, Av, value, entry) can 
be said as a document conforming to DTDC, if and only if there is a mapping f : 
E!Av!{V}�T! � ��

T

A
�8

8 , such that: 

� E is a set of instances of all elements conforming to T. For each regular expres-
sion %� E, %::= %* | %+ | %? | %+% | %,% | ; | atom value, ; denotes the empty 
value, “*” stands for the Kleene closure, “+” for at least one %, “?” for zero or 
one %, and “,” stands for the concatenation; 

� Av is a set of all attribute values of A(8); 
� V is the set of value of all atomic values, �value� V, f (value)� T; 
� Entry is the root of the XMLA document, f (r)=entry; 
� XMLA logically implicates the constraint set 7. 

Figure 1 illustrates an architecture of automatically mapping from relational data 
into XML data. Schema-Extractor and Data-Extractor are charging with extracting 
schema and data from relational database respectively. By using mapping rules given 
in the following sections, Schema-Translator maps relation schema into DTDC auto-
matically. Based on the mapped DTDC and mapping rules, Data-Translator translates 
the result form Data-Extractor and produces XMLA document. 

The XMLA is a mapped XML document that is defined to maintain data con-
sistency required by integrity constrains. IC package is a Java based XML service 
library package that can be loaded into Data-Translator at runtime. The package 
provides core XML capabilities including a fast XML parser with optional validation 
and an inmemory object model graph conforming to XMLA. By using this way, we 
can filter query commands in an XMLA element. Any opertions violating integrity 
constraints over XMLA should be checked out and rejected. Java is chosen as the 
function description language because of Java’s support for portability, its flexibility 
as a high level language, and its support of dynamic linking/loading, multi-threading 
and standard libraries. In an XMLA, when the basic operation described by the active 



344         X. Yang, G. Yu, and G. Wang 
 

 

node of the attached elements is invoked, the corresponding conditions will be 
evaluated to decide whether the actions of checking integrity constraints are executed. 

4  Referential Integrity Constraints Mapping 

The mapping approach for keys and foreign keys has been fully discussed in [15]. In 
this paper we focus on maintaining foreign keys and mapping advanced constraints of 
SQL. In order to give a completely mapping rules, thebasic mapping rules are simply 
introduced here.  

4.1  Basic Mapping 

Rule 1 Basic Table Mapping. Given a table R(A) in a relational database. 
�a1,a2,…,an� A, the mapping rule for the basic table is listed as follows. 
� The table name and attribute name are mapped into the types of the associated 

elements of XMLA: T(R)= {a1, a2,…, an}; 
� All tuples of table R are mapped into sub-element types of root element type: 

Tnew(r) = Told(r) !{R*}; 
� All attribute values of table R are mapped into sub-element types of type R: 

Tnew(R)={ a1, a2,…, an }; 
� 7new = 7old; 
� According to the DTDC, construct XMLA. Each tuple in table R is translated into a 

sub-tree with three levels. The top level of the sub-tree is an element labeled by 
tag R, the middle level are elements labeled by ai, and the bottom level are atom 
value originated from attributed values from a R tuple. All sub-trees have the same 
root node entry. 

Rule 2 Key Mapping. Given a table R(A, B) in a relational database. Let X denote 
the key of R. �a1,a2,…,an� A, �b1,b2,…,bm� B, the mapping rule for key A is given as 
follows. 
� Add constraints into the constraint set: 7new= 7old !{R.A �K R}; 
� If A is the primary key of R 

�� Let l be ID attribute of R to express primary key: A(R)={l}, K(R.l)=ID; 

Fig. 1. Transform data from RDB to XMLA with the ability to maintain data consistency 

 check 

 execute 

 reject operations 

XMLA relational 
data 

schema 
extractor 

schema 
translator 

mapping rules 

data 
extractor 

data 
translator 

DTDC 

IC package 



Efficiently Mapping Integrity Constraints from Relational Database         345 

 

�� The value of l is constructed by the value of A: V(R.l)= �
�

n

i
ia

1

; 

�� Add constraints into the constraint set: 7new= 7old !{R.l �ID R}; 
� Constructing indices for keys {ai}, the algorithm is given as follows. 

Algorithm con_index(cur:current node,ind:index of keys) 
Begin 
 for each keys of cur 
 node:=find(ind,cur.key); 
 if(node=NULL)  
 insert_value(ind,cur.key,node);  
 endif 
 endfor 
end 

Useful relational techniques is expected to exploited in XMLA. While processing a 
key, an index is built to facilitate query in XMLA. maps the values of keys to the ID 
attribute of the element. 

In relational databases, a table with foreign keys referring to other tables can be an 
entity as well as a relationship between entities. For convenience, we will use three 
tables R(A, B), S(C, D, E) and Q(F, G) to represent multiple tables Ri, Sj and Qk(1� i 
� n,1� j �m,1� k � p) respectively. 

Rule 3 Foreign Key Mapping. Given tables R(A, B), S(C, D, E) and Q(F, G) in a 
relational database, and suppose attributes A and F are keys of tables R and Q respec-
tively, attributes D and E are foreign keys referring to tables R and Q respectively. A, 
B,…, and G can represent an attribute or a set of attributes: A={a1,a2,…,an}, 
D={d1,d2,…,dl}, E={e1,e2,…,en}, F={f1,f2,…,fl}, then the mapping rule for foreign key 
is given as follows. 
� Add foreign key constraints: 7new=7old !{S.D�FK R.A, S.E �FK Q.F}; 
� If A and F are primary keys of R and Q respectively 

�� Let ld, le be IDREF attributes of S to express foreign keys referring to R, Q in 
table S respectively: A(S)= A(S)!{ld, le}, K(S.ld) = IDREF, K(S.le) = IDREF; 

�� Let lR, lQ be IDREFs attributes of R, Q respectively to express inverse refer-
ence to S: A(R)=A(R) !{lR}, A(Q)= A(Q) !{lQ}, K(R.lR) = IDREFs, K(Q.lQ) = 
IDREFs; 

�� Construct IDREF attributes ld, le in table S: V(S.ld)= �
�

l

i
id

1

, V(S.le)= �
�

n

i
ie

1

; 

�� Add foreign key constraints into the constraint set: 7new=7old !{S.ld�R R.l’, S.le 
�R Q.l’’, R.lR�RSS.l’, Q.lQ �RS S.l’}; 

�� Constructs IDREFs attribute values from K and 7new of the mapped DTDC, the 
algorithm is referred to [15]. 



346         X. Yang, G. Yu, and G. Wang 
 

 

4.2  Options Mapping for Enforcing Foreign Key Constraints 

The four options described in Example 1 are specified as part of the foreign key 
declaration. The default option is no action, which means that the action (delete or 
update) violating constraints is to be rejected. 

Rule 4 Options Mapping. Given tables R(A, B), S(C, D, E) in a relational database. 
Let A be the key of table R, let D be the foreign key referring to table R, let 
M={delete, update} be the operation set of R tuples, and let O={o1,o2,…,on} be the set 
of options on M. The mapping rule for options is given as follows. 
� If delete� M, let lRe, lRa be event and action attributes of R respectively, the value 

of R.lRe be delete: A(R)new= A(R)old ! {lRe, lRa}, K(R.lRe) = K(R.lRa) = OP, 
V(R.lRe)=delete; 

� If update� M, let lAe, lAa be event and action attributes of A respectively, the value 
of A.lup be update: A(A)new=A(A)old!{lAe,lAa}, K(A.lAe)=OP, V(A.lAa)=update; 

� The values of action attribute R.lRa and A.lAe are assigned according to the differ-
ent operations belongs to M and different options on M. The comparison table is 
listed in Table 1. 

Table 1. Options and function pair 

Operation option function option function 
cascade delete_c set default delete_d Deletion operation 

no action delele_n set null delete_u 
cascade update_c set default update_d Update operation 

no action update_n set null update_u 

The eight functions listed in Table 1 are implementations of active nodes. The 
mapped XMLA of Example 1 and the algorithm of delete_c are listed in Example 2.  

Example 2. 

<root> 
 <advisor ID=“001” IDREF=“s001” IDREF=“s002”  
 event=“delete” action=“delete_c”> 
 <ano event=“update” action=“update_n”>001</ano> 
 <aname> … </aname> 
 </advisor> 
 <student ID=“s001” IDREF=“001”> 
 <sno> … </sno> 
 </student> 
 … 
</root> 

Algorithm delete_c(cur:current node,ind:index of keys) 
Begin 
 for each fkeys of cur 
 refNodes := GetRefNodes(ind,cur.fkey);  
 num := 0; 
 for each refNodes rn of cur 
 DeleteRefNodes(rn); num := num+1; 



Efficiently Mapping Integrity Constraints from Relational Database         347 

 

 endfor //search over 
 DeleteAllNodes(cur); 
 endfor 
end 

5  General Constraints Mapping 

5.1  Table Constraints Mapping 

General constraints are specified over a single table using table constraints, which 
have the form CHECK conditional-expression. Look at Example 3: 

Example 3. 

Create table student (sno char(10) NOT NULL, 
 age integer, primary key(sno),CHECK (age >= 16); 

Rule 5 Table Constraints Mapping. Given a table R(A, B, C) in a relational data-
base, and suppose B={b1,b2,…,bn} are defined in CHECK conditional-expression. The 
mapping rule for table constraints is given as follows. 
� Let lRe, lRa be event and action attribute of element R respectively, the value of 

R.lRe be update: A(R) = A(R) ! {lRe}, K(R.lRe) = OP, V(R.lRe)=delete; 
� Let lBe, lBa be event and action attribute of element B respectively, the value of 

B.lBe be update: A(B) = A(B) ! {lBe}, K(B.lBe) = OP, V(B.lBe)=update; 
� Let the values of R.lRa and B.lBa be the same function name performing check 

operation: V(R.lRa)= V(B.lBa)=check. 

The mapped XMLA is: 

<root> 
 <student ID=“…” event=“delete” action=“check”> 
 <sno > …</sno> 
 <age event=“update” action=“check”> 23 </age> 
 </student> 
</root> 

In Example 3, the deletions of student tuples will not violate the CHECK 
condition-expression. However, the system can not get this semantic automatically 
through the CHECK condition expression. In order to provide a general mapping 
approach for table constraints, delete command on student and update command on 
student.age should be evaluated. If the evaluation result is false, the command will be 
rejected. Here, check is a function performing data domain validation. 

5.2  Assertion Mapping 

The best solution of maitaining a general constraints over several tables is to create an 
assertion. Rule 6 gives the mapping rules for assertion. 



348         X. Yang, G. Yu, and G. Wang 
 

 

Rule 6 Assertion Mapping. Given tables R(A, B, C) and S(D, E, F) in a relational 
database, and suppose an assertion is defined over tables R and S. Let B={b1,b2,…,bn} 
and E={e1,e2,…,em} be attributes defined in CHECK conditional-expression, the 
mapping rule for the assertion is given as follows. 
� Let lRe, lRa be event and action attribute of element R respectively, the value of 

R.lRe be delete: A(R) = A(R) ! {lRe}, K(R.lRe) = OP, V(R.lRe)= delete; 
� Let lSe, lSa be event and action attribute of element S respectively, the value of S.lSe 

be delete: A(S) = A(S) ! {lSe}, K(S.lSe) = OP, V(S.lSe)=delete; 
� Let lBe, lBa be event and action attribute of element B respectively, the value of 

B.lBe be update: A(B) = A(B) ! {lBe}, K(B.lBe) = OP, V(B.lBe)=update; 
� Let lEe, lEa be event and action attribute of element E respectively, the value of 

E.lBe be update: A(E) = A(E) ! {lEe}, K(E.lEe) = OP, V(E.lEe)=update; 
� Let the values of R.lRa, S.lSa, B.lBa and E.lEe be the same function name performing 

check operation: V(B.lBa)= V(E.lEa)= check. 

Fox example, the assertion definition and the mapped XMLA are listed as Example4. 
Example4. 

Create ASSERTION smallDepartment 
CHECK ((select count(A.ano) from advisor A)+  
 (select count(S.sno) form student S)<500); 

<root> 
 <advisor ID=“…” event=“delete” action=“check”> 
 <ano event=“update” action=“check”> … </ano> 
 <aname> …</aname> 
 </advisor> 
 <student ID=“…”event=“delete” action=“check”> 
 <sno event=“update” action=“check”> … </sno> 
 <age> …</age> 
 </student> 
 … 
</root> 

5.3  Insertion Checking 

Any insertion that violate general constraints should be rejected. In Example 1, the 
insertion of student tuple should be evaluated before commit the command.  

Rule 7 Adding Insertion Checking. Given an XMLA document, the insertion check-
ing should be added if and only if any of the following three conditions hold: 

1. If relation R is a subordinate relation with a foreign key constraint; 
2. If a table constraint is defined on relation S; 
3. If an assertion is defined over relations Qi. 

The mapping rule for insertion is given as follows. 
� Let lope, lopc, lopa be attributes of root element r: A(r) = {lope, lopc, lopa}, K(r.lope) 

=K(r.lopc) =K(r.lopa) =OP; 
� Let the value of event attribute r.lope be insert: V(r.lope)=insert; 



Efficiently Mapping Integrity Constraints from Relational Database         349 

 

� Let the values of condition attribute r.lopc be R, S, Qi for the above three condi-
tions respectively: (1) V(r.lopc)=R, (2) V(r.lopc)=S, (3) V(r.lopc)={Qi}; 

� Let the values of action attribute r.lopa be function names: (1) V(r.lopa)=insert, (2) 
V(r.lopa)=insert_check, (3) V(r.lopa_i)= insert_assertion; 

For example, the root element in Example 4 is changed follows: 

<root event=“insert” condition=“advisor”,“student” 
 action=“assertion_check”> … 
</root> 

6  Structure Optimization 

Rules 1~7 propose general mapping rules based on integrity constraints. Intuitively, 
the hierarchy is more suitable for XML specification as well as the relationships in 
real world. Thus, some constraints can be replaced by hierarchy. By using constraints 
reducing rule, the size of constraint set 7 can be reduced, and the query ability can be 
optimaized further. 

Rule 8 Constraints Reducing. Given element types R, S in an XMLA document. 
Assume that S is the sub-element of the root element r, eR is a sub-elements of R, lR is 
an IDREFs attribute of R, e’ is the primary key of elements S, and l’ is an ID attribute 
of S. If {R.lR �RS S.l’, R.eR �FK S.e}�7 , let attributes lRa, lSa are action attributes of R, 
S respectively. The constraints reducing rule for elements R is given as follows. 
� Tnew = Told; 
� If V(R.lRa)=delete_u or V(R.lSa)= update_u, do not change XMLA 
� Else 

Let S be sub-element of R, remove the attribute lR and the edge between the 
root type r and S: T(r)= T(r)�{S*}, T(R)= T(R) !{S*}, A(R)= A(R)�{lR}; 

� Change the values of action attribute lRa and lSa to corresponding functions name 
listed in Table 2; 

� Reduce constraints in 7: 7new = 7old�{ R.lR �RS S.l’, R.eR �FK S.e }. 

Table 2. Function pair 

functions based on 
constraints 

functions based on 
hierarchy 

functions based on 
constraints 

functions based on 
hierarchy 

delete_c deletec update_c updatec 

delele_n deleten update_n updaten 

delete_d deleted update_d updated 

delete_u — update_u — 

The hierarchical format in XML implies that element S can not be the sub-element 
of elements R and Q simultaneity. When S is associated with R and Q simultaneity, 
we only change one pair of constraints, e.g., constraints between R and S into hierar-
chy, and keep the other pairs of constraints. In fact, the hierarchy like R and S can 
solve most of the instances in the real world, e.g., the relationships among university, 



350         X. Yang, G. Yu, and G. Wang 
 

 

department, faculty, student can be substituted for hierarchy. With multiple IDREFs 
in an XMLA, the order in which they are pruned may affect the final structure. We 
adopts a depth first ordering approach in loading and processing elements within an 
XMLA. The optimization mapping of Example 2 is listed as follows. 

<root event=“insert”condition=“student”action=“…”> 
 <advisor ID=“001”event=“delete”action=“deletec”> 
 <ano event=“update” action=“update_n”>001</ano> 
 <aname> … </aname> 
 <student ID=“s001”IDREF=“001”> <sno> … </sno> 
 </student> 
 … 
 </advisor> 
</root> 

7  Conclusion 

This paper proposed an XML document with active nodes, XMLA, and extended 
DTD, DTDC, to solve the integrity constraints mapping problem from relational data-
bases to XML document. More specifically, the characteristics of ICMAP are listed as 
follows. (1) In XMLA, the basic mappings of referential integrity constraints are pre-
served. (2) In order to provide an effective and convenience approach to maintain 
integrity constraints, the active nodes is defined to check commands on XML in-
stance. (3) In order to enforce integrity constraints, four options mapping over basic 
command delete, update and insert were presented. (4) The times of searching nodes 
within a document can be reduced by building indices based on keys. (5) The map-
ping rules for general constraints such as table constraints and assertion were pro-
posed. (6) The hierarchy based constructing method was adopted to express the flat 
relational data in XMLA that provided a good foundation for structure optimization.  

The study of mapping integrity constraint provides stable foundation for informa-
tion integration and query optimization. General constraints provide rich definitions 
for semantic constraints. So far, how to map trigger is still an open problem that is 
also our future work. We believe that ICMAP approach proposed here is promising 
and provides a good idea for our further research. The distinguished property of 
ICMAP is that the active node can be defined on instance level as well as schema 
level. The property are also useful for integrating information by customize the Java 
function of active nodes. 

Reference 

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., and Maler, E.: Extensible Markup Language 
(XML) 1.0 (Second Edition). W3C recommendation REC-xml-20001006 (2001) 
http://www.w3.org/TR/2000/REC-xml-20001006 

2. Biron, P.V. and Malhotra, A.: XML schema part 1: Structure. W3C Working Draft (1999) 
http://www.w3.org/TR/xmlschema-2/ 

3. Abiteboul, S. and Vianu, V.: Rugular Path Queryies with Constraints. In Proc. 16th ACM 
Symp. on Principles of Database Systems (1997) 51-61 



Efficiently Mapping Integrity Constraints from Relational Database         351 

 

4. Labrinidis, A. and Roussopoulos, N.: WebView Materialization. In Proc. of the ACM 
SIGMOD Intl. Conf. on Management of Data. Dallas, Texas (2000)14-19 

5. Challenger, J., Iyengar, A., and Dantzig, P.: A Scalable System for Consistently Caching 
dynamic Web Data. In Proc. of INFOCOM’99 (1999) 

6. Calvanese, D., Giacomo, G.D., and Lenzerini, M.: What is View-Based Query Rewriting? 
In Proc. of the 7th Intl. Workshop on Knowledge Representation Meets Databases (2000) 
17-27 

7. Papakonstantinou, Y. and Vassalos, V.: Query Rewriting for Semistructured Data. In Proc. 
of ACM SIGMOD Intl. Conf. on Management of Data (1999) 455–466 

8. Cluet, S., Delobel, C., Siméon, J., and Smaga, K.: Your Mediators Need Data Conversion! 
Proc. of ACM SIGMOD Conf. on Management of Data. Seattle, U.S.A. SIGMOD Record, 
Vol.27(2). Association for Computing Machinery, Inc., New York (1998)177-188 

9. Ullman, J.D.: Information Integration Using Logical Views. In Proc. of the 6th Intl. Conf. on 
Database Theory. Lecture Nodes in Computer Science, Vol. 1186. Springer-Verlag, Berlin 
Heidelberg New York (1997) 19–40 

10. Christophides, V., Cluet, S., and Siméon, J.: On Wrapping Query Languages and Efficient 
XML Integration. Proc. of ACM SIGMOD Conf. on Management of Data. Dallas, U.S.A. 
In: W.Chen, J.Naughton and P.Bernstein(eds.): SIGMOD Record, Vol. 29(2). Association 
for Computing Machinery, Inc., New York (2000) 141-152 

11. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn N.(ed.): XML Schema Part 1: 
Structures. W3C (2000) http://www.w3.org/TR/xmlschema-1 

12. Carey, M., Lindsay, B., Pirahesh, H., and Reinwald, B.: Efficiently Publishing Relational 
Data as XML Documents. Proc. of 26th VLDB. Morgan Kaufmann, Cairo, Egypt (2000) 
65-76 

13. Buneman, P., Fan, W., Weinstein, S.: Interaction between Path and Type Constraints. Proc. 
of ACM Symposium on Principles of Database Systems. ACM Press. Philadelphia, U.S.A 
(1999) 56-67 

14. Fan, W. and Siméon, J.: Integrity Constraints for XML. Proc. of ACM Symposium on 
Principles of Database Systems. ACM Press. Dallas, Texas (2000) 

15. Yang, X. and Wang, G.: Mapping Referential Integrity Constraints from Relational Data-
bases to XML. Proc. of 2nd Intl. Web-Age Information Management. In: Lu, H. and Yu, G. 
(eds.) Lecture Nodes of Computer Science, Springer-Verlag, Xi’an, China (2001) 

16. Lee, D. and Chun, W. Comparative Analysis of Six XML Schema Languages. SIGMOD 
Record. Vol.29(3). Association for Computing Machinery, Inc., New York (2000) 76-87 

17. Ramarkrishnan, R and Gehrke, H.: Database Management Systems(Second Edition). 
McGraw-Hill. New York, 1999. 

 
  



A Web-Based System for Handling
Multidimensional Information through MXML�

Manolis Gergatsoulis1, Yannis Stavrakas1,2, Dimitris Karteris1,
Athina Mouzaki1, and Dimitris Sterpis1

1 Institute of Informatics & Telecommunications
National Centre for Scientific Research (N.C.S.R.) ‘Demokritos’

153 10 Aghia Paraskevi Attikis, Greece
2 Knowledge & Database Systems Laboratory

National Technical University of Athens (NTUA), 157 73, Athens, Greece
{manolis,ystavr,mouzaki}@iit.demokritos.gr

dkart@tee.gr

Abstract. In this paper we address an issue common in the frame of
WWW, namely information entities that present different facets under
different contexts (or worlds). Handling such multifacet or multidimen-
sional entities requires a multidimensional paradigm for Web data, which
consists of representation, manipulation and presentation issues. For rep-
resenting multidimensional data we employ Multidimensional XML, a
markup language that incorporates dimensions in XML. We discuss the
presentation of multidimensional data through multidimensional XSL
stylesheets. We describe the design of a system that implements the ba-
sic functionality of the multidimensional paradigm, and demonstrates
how a user can interact with a multidimensional document and view dif-
ferent variants of the document under different worlds.

Keywords: Multidimensional XML/XSL, Web Databases, Multidimen-
sional Languages

1 Introduction

The wide acceptance of WWW was due, to a great extend, to the simplicity
of its protocol (HTTP) and language (HTML). However, the need for more
sophisticated functionality led to secure protocols (HTTPS), flexible languages
(XML) [5,7] and ambitious visions for the future of the Web (Semantic Web [4]).

Viewing the Web as a large database, a number of query languages and data
models, such as semistructured data [1,15], have been proposed. However, those
models fall short when it comes to representing multidimensional information;
that is, information that presents different facets under different contexts. Ac-
tually, there are many cases where variants of the same entity do exist. As a
� This work has been partially supported by the Greek General Secretariat of Research

and Technology under the project “Executable Intensional Languages and Intelligent
Applications in Multimedia, Hypermedia and Virtual Reality” of ΠENEΔ’99.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 352–365, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Web-Based System for Handling Multidimensional Information 353

simple example imagine a report that needs to be represented at various degrees
of detail and in various languages. A solution would be to create a different
document for every possible combination. Such an approach is certainly not
practical, since it involves excessive duplication of information. What is more,
the different variants are not associated as being parts of the same entity. The
problem of varying entities is very common in the frame of the WWW, where
information providers cannot assume too much about the background context of
the information consumers. For those reasons, models and languages suitable to
represent and exchange multidimensional data over the Web are needed.

Ideas on how this problem can be tackled are given in [14,13], where a formal-
ism called Multidimensional XML (MXML) is presented. MXML was influenced
by Intensional HTML (IHTML) [17,6,16]. IHTML is a Web authoring language,
based on and extending ideas proposed for a software versioning system in [12],
that allows a single Web page to have different variants and to dynamically adapt
itself to a given context. The main difference between IHTML and MXML is a
projection of the difference between HTML and XML, that is, focusing on en-
coding structure rather than on presentation.

In this paper, we propose a multidimensional paradigm for representing and
viewing context-dependent Web data. We present a comprehensive example that
demonstrates the syntax and relationships of the various multidimensional com-
ponents in the paradigm. We describe the architecture and design of a system
that implements the basic functionality of the proposed paradigm, and discuss
some implementation issues. Finally, we conclude the paper with directions for
future work.

2 A Multidimensional Paradigm

The problem of Web information entities that may assume different facets under
different contexts (or worlds) leads to a new paradigm for representing and view-
ing such entities. We refer to the new paradigm as multidimensional paradigm,
and in this section we examine its various aspects.

2.1 The Multidimensional Approach

A widely adopted way to encode, represent, and exchange information in the
frame of WWW is through eXtensible Markup Language (XML in short) [5,7].
XML is flexible enough to adapt to different domains, and capable of handling
the irregularities often exhibited by Web data. XML does not address the issue of
how to present information; a solution to this is offered by eXtensible Stylesheet
Language (XSL in short) [2,8].

XSL can be seen as a document containing instructions on how to present
information in XML documents. It is important to note that XSL stylesheets
are also XML documents. An XSL stylesheet can be applied to a specific XML
document, and the result can be displayed by a Web browser. Actually, a number
of XSL documents can be applied to the same XML document, resulting in
different ways to view that XML document, or parts of it.



354 M. Gergatsoulis et al.

XML

XML

MXML

XML

.   .   .

w1

w2

wn

w1,1

wn,1

. . .

. . .

. . .

wn,kn

w2,k2

w1,k1

XML

XML

XSL

XML

XML
XSL

XML

XML
XSL

MXSL

w2,1

.   .   .

Fig. 1. Multidimensional XML, multidimensional XSL, and possible worlds

A multidimensional approach would allow a single document to have a num-
ber of variants, each holding under a specific world. A world is defined by giving
values to a number of parameters called dimensions. We assume that infor-
mation in such a document is encoded in a suitable markup language called
multidimensional XML (MXML in short). Once a world is specified, such an
MXML document can be reduced to a conventional XML document that consti-
tutes the holding facet under that world. This world-associated decomposition
of an MXML document to a number of conventional XML variants is depicted
in Fig. 1, where the possible worlds for the MXML document are denoted as
w1, w2. . .wn.

Since XSL stylesheets are XML documents, the same principles hold for XSL
stylesheets as well. A multidimensional XSL stylesheet (MXSL in short) encodes
a set of conventional XSL stylesheet, each being the facet of the MXSL under
a specific world. Like conventional XSLs, an MXSL must be associated with
an XML or an MXML document. For each possible world, the holding XSL
is applied to the holding XML to give the view of the document under that
world. The relation between MXML and MXSL is given pictorially in Fig. 1.
Note that the possible worlds for an MXSL may not be identical with those of
the corresponding MXML. A number of dimensions in an MXSL may relate to
the definition of alternative presentations for the same XML document. Besides,
some dimensions of an MXML may also be used in the corresponding MXSL to
establish a correspondence between the holding variants of MXML and MXSL.



A Web-Based System for Handling Multidimensional Information 355

2.2 Multidimensional XML

For supporting the multidimensional approach described above, we propose Mul-
tidimensional XML (MXML for short) [14,13,10], a markup language that incor-
porates in an elegant way multidimensional capabilities in XML. The notion of
world is fundamental in MXML. A world represents an environment under which
data in a multidimensional document obtain a substance. A world is determined
by assigning values to a set S of dimensions. For each dimension d there exists
a domain Dd over which d ranges. A world W is defined to be a set which, for
each dimension d ∈ S, contains a pair (d, u), where u ∈ Dd.

In an MXML document, dimensions may be applied to elements and at-
tributes. An element whose content depends on one or more dimensions is called
multidimensional element, while an attribute whose value depends on one or
more dimensions is called multidimensional attribute.

An MXML document uses context specifiers which are syntactic constructs
that specify sets of worlds. Context specifiers qualify the variants of multidimen-
sional elements or attributes, relating each variant to the set of worlds under
which the variant becomes the holding one for the corresponding multidimen-
sional entity.

In MXML syntax, a multidimensional element has the form:

<@element_name attribute_specification>
[context_specifier_1]

<element_name attribute_specification_1>
element_content_1

</element_name>
[/]

. . .
[context_specifier_N]

<element_name attribute_specification_N>
element_content_N

</element_name>
[/]

</@element_name>

A multidimensional element is denoted by preceding the element name with
the special symbol “@”. A multidimensional element encloses one or more con-
text elements that constitute facets of that multidimensional element, holding
under specific worlds specified by the corresponding context specifier. Context
elements have the same form as conventional XML elements. All context ele-
ments belonging to a multidimensional element have the same name which is
the name of the multidimensional element. In MXML, context elements of the
same multidimensional element may have different value or structure.

To declare a multidimensional attribute we use the following syntax:

attribute_name = [context_specifier_1] attribute_value_1 [/]
. . .

[context_specifier_n] attribute_value_n [/]



356 M. Gergatsoulis et al.

A multidimensional attribute is expressed as an attribute whose value is a
set of context - value pairs. Each one of those context-associated values becomes
the holding value of the attribute under the corresponding context. Therefore,
under different worlds, an attribute may evaluate to different values depending
on its context specifiers.

A context specifier is of the form:
dimension 1 specifier, ..., dimension m specifier

where dimension i specifier, for i = 1 to m is a dimension specifier of the
form:

dimension name specifier operator dimension value expression

A specifier operator is one of =, ! =, in, not in. If the specifier operator is
either = or ! =, the dimension value expression consists of a single dimension
value. Otherwise, if the specifier operator is either in or not in, the dimension
value expression is a set of values of the form {value1, . . . , valuek}, with k ≥ 1.

In both multidimensional attributes and elements, a context specifier may
also be the reserved word “default”. The default context specifier represents
all worlds not covered by other context specifiers of the same multidimensional
entity. The empty context specifier [ ] is called universal context specifier, and
represents the set of all possible worlds.

A multidimensional DTD (MDTD in short) has been proposed in [10] for
defining constraints on the structure of MXML documents. An MDTD allows
to specify dimensions and their respective domains. Moreover, it is possible to
impose different constraints under different contexts to an element structure. In
this way, an MDTD can specify that an element has different structure under
different sets of worlds. A graph data model for MXML has also been proposed
in [10] that takes into acount contexts when representing MXML data.

2.3 Reducing MXML to XML

An important point concerning the context specifiers of a multidimensional en-
tity is that they must be mutually exclusive, in other words, they must specify
disjoint sets of worlds. This property of multidimensional entities makes it pos-
sible, given a specific world, to safely reduce an MXML document to an XML
document holding under that world.

Informally, the reduction of an MXML document D to an XML document
Dw holding under the world w proceeds as follows:

Beginning from the document root to the leaf elements, each multidimen-
sional element E is replaced by its context element Ew, which is the holding
facet of E under the world w. If there is no such context element, then E along
with its subelements is removed entirely.

A multidimensional attribute A is transformed into a conventional attribute
Aw whose name is the same as A and whose value is the holding one under w.
If no such value exists then the attribute is removed entirely.



A Web-Based System for Handling Multidimensional Information 357

Notice that the above process can be generalized for producing a facet that
holds under a set of more than one worlds. In the general case, that facet is an
MXML document which is a pruned version of the original MXML document.

2.4 A Comprehensive Example

As an example of the multidimensional paradigm, consider information about
a book which exists in two different editions, an English and a Greek one. In
Example 1, the element book has six subelements. The isbn and publisher are
multidimensional elements and depend on the dimension edition. The elements
title and authors remain the same under every possible world. The element
price is a multidimensional element whose value depends on the dimensions
edition and customer type. Note that the element translator has substance
only under the worlds where edition has the value greek.

Example 1. Multidimensional Information about a book encoded in MXML.

<book>
<@isbn>

[edition = greek] <isbn>0-13-110370-9</isbn> [/]
[edition = english] <isbn>0-13-110362-8</isbn> [/]

</@isbn>
<title>The C programming language</title>
<authors>

<author>Brian W. Kernighan</author>
<author>Dennis M. Ritchie</author>

</authors>
<@publisher>

[edition = english] <publisher>Prentice Hall</publisher> [/]
[edition = greek] <publisher>Klidarithmos</publisher> [/]

</@publisher>
<@translator>

[edition = greek] <translator>Thomas Moraitis</translator> [/]
</@translator>
<@price>

[edition=english,customer_type=individual]<price>13.000</price>[/]
[edition=english,customer_type=library]<price>10.000</price>[/]
[edition=english,customer_type=student]<price>11.700</price>[/]
[edition=greek,customer_type=individual]<price>5.000</price>[/]
[edition=greek,customer_type=library]<price>3.000</price>[/]
[edition=greek,customer_type=student]<price>4.500</price>[/]

</@price>
</book>

The MXML in Example 2 is an MXSL stylesheet for the MXML document
in Example 1. This MXSL specifies how the various facets of the corresponding
MXML in Example 1 are to be presented.

The ISBN is shown only if the request has been made by a library, while title
and authors are shown if the potential client is an individual or a student. Note



358 M. Gergatsoulis et al.

how the wrapper element, which is defined in XSL, can also be used elegantly
in MXSL to exclude the translator in case the request concerns the original
language edition of the book. Finally, publisher and price are displayed in any
case.

Notice that an MXSL may contain multidimensional versions of the elements
and attributes defined within the frame of conventional XSL. There is no con-
straint on which dimensions participate in the MXSL context specifiers; they
may also occur in the corresponding MXML document, as is the case of dimen-
sions customer type and edition in Example 2, or they can be different, as is
the case of dimension size in the same example.

Example 2. An MXSL multidimensional stylesheet for Example 1.

<xsl:template match="/">
<DIV STYLE=[size=large]"font-size:22pt"[/][size=normal]

"font-size:18pt"[/]>Book
</DIV>
<@SPAN>

[customer_type = library]
<SPAN STYLE="font-size:15pt">

ISBN: <xsl:value-of select = "book/isbn"/>,
</SPAN>

[/]
[customer_type in {individual, student}]

<SPAN STYLE="font-size:15pt">
Title: <xsl:value-of select="book/title"/>,
Authors: <xsl:value-of select="book/authors"/>,
<@wrapper>

[edition=greek]
<wrapper>

Translator: <xsl:value-of select="book/translator"/>,
</wrapper>

[/]
</@wrapper>

</SPAN>
[/]

</@SPAN>
<SPAN STYLE="font-size:15pt">

Publisher: <xsl:value-of select="book/publisher"/>,
</SPAN>
<SPAN STYLE="font-size:15pt">

Price: <xsl:value-of select="book/price"/>
</SPAN>

</xsl:template>

For the world w = {(edition, greek), (customer type, student)}, the
MXML document in Example 1 is reduced to the conventional XML document
in Example 3.



A Web-Based System for Handling Multidimensional Information 359

Example 3.

<book>
<isbn>0-13-110370-9</isbn>
<title>The C programming language</title>
<authors>

<author>Brian W. Kernighan</author>
<author>Dennis M. Ritchie</author>

</authors>
<publisher>Klidarithmos</publisher>
<translator>Thomas Moraitis</translator>
<price>4.500</price>

</book>

For the world w′ = {(edition, greek), (customer type, student),
(size, large)}, the MXSL stylesheet in Example 2 is reduced to the XSL
stylesheet in Example 4.

Example 4.

<xsl:template match="/">
<DIV STYLE="font-size:22pt"> Book </DIV>
<SPAN STYLE="font-size:15pt">

Title: <xsl:value-of select="book/title"/>,
Authors: <xsl:value-of select="book/authors"/>,
<wrapper>

Translator: <xsl:value-of select="book/translator"/>,
</wrapper>

</SPAN>
<SPAN STYLE="font-size:15pt">

Publisher: <xsl:value-of select="book/publisher"/>,
</SPAN>
<SPAN STYLE="font-size:15pt">

Price: <xsl:value-of select="book/price"/>
</SPAN>

</xsl:template>

The result of applying the XSL stylesheet of Example 4 to the XML document
of Example 3 looks like the following:

Book
Title: The C programming language, Authors: Brian W. Kernighan, Den-
nis M. Ritchie, Translator: Thomas Moraitis, Publisher: Klidarithmos,
Price: 4.500

Finally, the analogous result for the world w′ = {(edition, english),
(customer type, library), (size, normal)} would look like this:

Book
ISBN: 0-13-110362-8, Publisher: Prentice Hall, Price: 10.000



360 M. Gergatsoulis et al.

3 System Architecture

In this section we describe a prototype system that demonstrates the basic prin-
ciples of the multidimensional paradigm we introduced in the previous sections.
The implemented system is called MXML Web Server and is a Web server ca-
pable of handling multidimensional data encoded in MXML/MXSL.

In a typical scenario, the user requests an MXML document through a con-
ventional Web browser, and is prompted to select values for each of the dimen-
sions associated with a requested document. After a world has been specified
by the user, the server sends the corresponding XML/XSL facet to be displayed
by the browser. The user can change the values of dimensions and observe how
different worlds are associated to different variants of the same multidimensional
document.

An important point is that, in the multidimensional paradigm, the man-
agement of dimensions and the reduction of MXML/MXSL can take place at
the server, the client, or both. Our system implements this functionality at the
server side mainly for reasons of compatibility with existing Web browsers. In
the general case, however, some of the dimensions can be considered at server
side, to eliminate irrelevant data and reduce the size of the response, while the
rest of the dimensions could be handled at client side, for reasons of privacy
or for minimizing the number of subsequent requests. This flexibility could be
useful and further explored in the frame of applying MXML to domains such as
electronic commerce and user modeling.

3.1 Extending URLs

URL (Uniform Resource Locator) [3] is the standard way to specify a resource
available on the Internet. We extend the syntax of URL in order to enable it to
handle multidimensional information. The extended URL has the form:

http://<host>:<port>/<path><context>?<search>

The only difference from conventional URL is that the token <context>
has been added, in order to incorporate dimensions. In the following example we
show an extended URL that represents a request for the variant of the document
named books.mxml, where edition is english and customer type is student.

http://myserver/books.mxml[edition=english,customer_type=student]

3.2 Design and Operation

The system comprises the software modules illustrated in Fig. 2. These modules
are: Request Analyzer, MXML Request Decomposer, View Extractor, MXML
Response Composer, and Conventional Web Server. In the following paragraphs
we shall briefly describe the functionality of each of those modules, as well as
their submodules, and discuss their role in the system operation.



A Web-Based System for Handling Multidimensional Information 361

MXML Web Server

file repository

Conventional
Web Server

MXML
Response
Composer

View Extractor

MXML
Request

Decomposer

Request
Analyzerfinal response

(XML,HTML,TEXT, ...)

normal request

response

MXML request

request type

(M)XSL

status information

(M)XML

MXML
file

identifier

user
context

MXML file

MXSL file

Client
Client

Client

Internet

client
 request

XML,HTML,TEXT, ... files

Fig. 2. MXML Web Server architecture

Request Analyzer: The Request Analyzer is responsible for determining the
type of client requests. There are two types of requests; normal requests, which
refer to HTML, XML, text files etc., and MXML-requests, which refer to MXML
files. If the request is of normal type, then the Conventional Web Server handles
it. Otherwise, if the request involves an MXML document, then the MXML
Request Decomposer is invoked to serve the request.

MXML Request Decomposer: This module decomposes the MXML re-
quest into sections. The three sections that comprise the MXML request are:
the MXML File Identifier, the User Context and the Request Type. The first
two sections are sent to the View Extractor module, while the third is sent
directly to the MXML Response Composer.

View Extractor: This module combines the information provided by the
MXML Request Decomposer with the corresponding MXML or MXSL files in
order to serve the request. The View Extractor consists of two sub-modules
called MXML Parser and MXML Specializer, as it is depicted in Fig. 3(a).

– MXML Parser: The MXML Parser uses the requested MXML File Iden-
tifier, which is provided by the MXML Request Decomposer, to access the



362 M. Gergatsoulis et al.

MXML Parser

MXML Specializer

context specific
(M)XML

context specific
(M)XSL

status
information

MXML
parse
tree

MXSL
parse
 tree

user
context

requested
MXML

file
identifier

MXSL fileMXML file

file
repository

View
Extractor

normal
request

Response
Composer

Response
Sender

response

final response
(XML,HTML,TEXT, ...)

Conventional
Web

 Server

response to
MXML
request

Request
Analyzer

Response
Composer

(a) (b)

Fig. 3. (a) View Extractor’s sub-modules, (b) Conventional Web Server’s sub-modules

corresponding MXML or MXSL file from the File Repository. Its role is to
parse the file and generate the corresponding MXML or MXSL parse tree.

– MXML Specializer: The MXML Specializer uses the parse tree that is
generated by the MXML Parser, and the User Context, which is provided
by the MXML Request Decomposer, to generate a context specific (M)XML
or (M)XSL file. This is done by reducing the original MXML/MXSL file to
an (M)XML/(M)XSL file that holds under the specified context. The type
of the produced file is passed to MXML Response Composer through the
status information.

MXML Response Composer: The MXML Response Composer constructs
the response and sends it to the Response Sender, which is responsible for dis-
patching the response to the client.

Conventional Web Server: The Conventional Web Server implements some
of the essential features of a conventional Web server. It consists of two sub-
modules, shown in Fig. 3(b). In case the type of request is normal, the response
is constructed by the Response Composer submodule that is part of the Con-
ventional Web Server, whereas in case the type of request is MXML-request the
response is produced in MXML Response Composer module and is passed to
the Response Sender submodule of the Conventional Web Server.



A Web-Based System for Handling Multidimensional Information 363

– Response Composer: The Response Composer analyzes the normal re-
quest, and constructs the response that is sent to the client. As it is depicted
in Fig. 3(b), this module is engaged in a client request service procedure only
if this request is of type normal.

– Response Sender: The Response Sender is responsible for sending the
response to the client. As stated above, the response originates either from
the Response Composer, or from the MXML Response Composer.

4 Implementation

The system components described in the previous section are in fact implemented
as two separate programs. The MXML Web Server (except View Extractor)
was developed in Java in order to take advantage of the powerful features that
this language offers for network programming. The View Extractor has been
implemented in ANSI C.

Fig. 4. A screenshot showing a reply from MXML Web Server



364 M. Gergatsoulis et al.

Figure 4 is a screenshot of the reply of MXML Web Server to the request:

http://143.233.3.195:1111/menu.mxml[season=spring,
detail=high,language=English].

The context specifier in this extended URL is composed dynamically by
JavaScript code, based on the values selected by the user for the dimension
drop-down lists, in the upper left dimension frame. Note that for every dimension
there exists a value “ANY” in the corresponding drop-down list. The meaning of
“ANY” is that no value is specified for that dimension. Consequently, if a context
specifier contains one or more “ANY”, it specifies more than one worlds. If it
does not contain “ANY” at all, it specifies exactly one world.

The upper-right action frame allows the user to view the MXML source
code, and the MXSL source code. If the selected context specifies exactly one
world (does not contain “ANY”) then the user may also see the XML and XSL
sources of the corresponding facets under that world, plus the final output docu-
ment. The source code and the final document are displayed in the lower output
frame, which in the case of Fig. 4 shows a variant of a multidimensional menu
of a restaurant corresponding to the world w = {(season, spring), (detail,
high), (language, English)}.

The implemented system can be reached at the URL:

http://www.iit.demokritos.gr/∼mxml

5 Conclusions and Future Work

In this paper we proposed a paradigm for handling multidimensional data in
the frame of the Web. We proposed the use of MXML to represent multidi-
mensional information, and showed how multidimensional stylesheets can be
expressed in MXSL. Through a comprehensive example we demonstrated the
reduction of MXML/MXSL to conventional XML/XSL under a specific world.
Finally, we presented a system that implements the basic functionality of the
proposed paradigm, and discussed some implementation issues.

Our future plans include the investigation on possible applications of MXML
in diverse fields, such as electronic commerce and digital libraries. We also con-
sider the representation of time dependent data through MXML [11], the rep-
resentation of cartographic and GIS information where a possible dimension is
scale, and applications where user profiling information plays an important role
for delivering the right data.

Since MXML is primarily considered as a data model and data exchange for-
mat, an interesting direction is how to efficiently store and retrieve MXML data.
Approaches used for XML, that employs RDBMS for storing XML fragments [9],
seem promising for adaptation to MXML.



A Web-Based System for Handling Multidimensional Information 365

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

2. S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E. Gutentag, A. Milowski,
S. Parnell, J. Richman, and S. Zilles. Extensible Stylesheet Language (XSL) Version
1.0. http://www.w3.org/TR/xsl, 2000.

3. T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL).
http://www.ietf.org/rfc/rfc1738.txt, 1994.

4. Tim Berners-Lee. Semantic web road map.
http://www.w3.org/DesignIssues/Semantic.html, 1998.

5. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(XML) 1.0 (second edition). http://www.w3.org/TR/REC-xml, October 2000.

6. G. D. Brown. IHTML 2: Design and Implementation. In W. W. Wadge, editor,
Proceedings of the 11th International Symposium on Languages for Intensional
Programming, pages 1–13, 1998.

7. Sudarshan S. Chawathe. Describing and manipulating XML data. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering, 22(3):3–9,
September 1999.

8. James Clark. XSL Transformations (XSLT). http://www.w3.org/TR/xslt, 1999.
9. M. Fernández, W.-C. Tan, and D. Suciu. SilkRoute: Trading between Relations

and XML. Computer Networks, 33(1–6):723–745, 2000.
10. M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating dimensions to XML

and DTD. It will be presented at International Conference on Database and Expert
Systems Applications (DEXA’ 01), Munich, Germany September, 2001.

11. T. Mitakos, M. Gergatsoulis, Y. Stavrakas, and E. V. Ioannidis. Representing
time-dependent information in multidimensional XML. Proc. of the 23rd Int. Conf.
“Information Technology Interfaces” (ITI’01), Pula, Croatia, June 2001.

12. J. Plaice and W. W. Wadge. A New Approach to Version Control. IEEE Trans-
actions on Software Engineering, 19(3):268–276, 1993.

13. Y. Stavrakas, M. Gergatsoulis, and T. Mitakos. Representing context-dependent
information using Multidimensional XML. In J. Borbinha and T. Baker, editors,
Research and Advanced Technology for Digital Libraries, 4th European Conference
ECDL’2000, Lecture Notes in Computer Science (LNCS) 1923, pages 368–371.
Springer-Verlag, 2000.

14. Y. Stavrakas, M. Gergatsoulis, and P. Rondogiannis. Multidimensional XML. In
P. Kropf, G. Babin, J. PLaice, and H. Unger, editors, Distributed Communities on
the Web, Third International Workshop (DCW’2000), Lecture Notes in Computer
Science (LNCS) 1830, pages 100–109. Springer-Verlag, 2000.

15. D. Suciu. An overview of semistructured data. SIGACT News, 29(4):28–38, De-
cember 1998.

16. W. W. Wadge, G. D. Brown, M. C. Schraefel, and T. Yildirim. Intensional HTML.
In Proceedings of the Fourth International Workshop on Principles of Digital Docu-
ment Processing (PODDP ’98), Lecture Notes in Computer Science (LNCS) 1481,
pages 128–139. Springer-Verlag, March 1998.

17. T. Yildirim. Intensional HTML. Master’s thesis, Department of Computer Science,
University of Victoria, 1997.



An Abstract Database Machine for Cost Driven
Design of Object-Oriented Database Schemas

Joachim Biskup and Ralf Menzel

Universität Dortmund, 44221 Dortmund, Germany
{biskup, menzel}@ls6.cs.uni-dortmund.de

Abstract The process of designing an object-oriented database schema
consists of several phases. During the phase of abstract logical formali-
sation one of many possible abstract object-oriented database schemas
must be chosen. This choice can be driven by the costs of the ulti-
mately implemented schema: How much space is needed? How long does
it take to compute queries and updates including enforcement of seman-
tic constraints? Because abstract logical formalisation is done indepen-
dently of an actual database management system, we need an abstract
database machine. Queries and updates are formulated as programs for
this database machine. Such programs are composed of steps which are
connected by channels for typed streams of value lists. In each step, a
basic or compound operation is executed, accepting input streams and
further parameters, delivering output streams for subsequent steps, and
accessing the persistent database state. The abstract database machine
is designed to meet two goals: to be expressive enough to implement
queries and updates, as considered for schema design, and to be simple
enough to allow cost estimations.

1 Introduction

A database schema should have at least the following two properties. It should
enable the user to represent all aspects (of the world) that are semantically
relevant for the application, and it should be a syntactically valid schema for the
given database system. A good database schema has additional properties. Many
of these are given as heuristics, which are indications for a conceptually good
schema [3]. Our main concern is the investigation of costs that a schema entails.

What do we mean when we say costs? First there is the space needed for
storing the application data. Additionally there is space overhead for access
structures added to the conceptual schema. These are the space costs that we
want to directly exploit for schema design. Second there are time costs. The
choice of the schema influences how long it takes the database system to answer
queries or execute updates. The cost analysis should also include the costs for
maintenance of the aforementioned access structures. There are two aspects
to semantic constraints. On the one hand they can cause additional costs for
checking them. On the other hand they can be employed to optimise queries
or updates, and algorithms for database operations can utilise them to gain
efficiency.

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 366–380, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



An Abstract Database Machine for Cost Driven Design 367

Fig. 1. Outline of cost driven database schema design

For the design of an object-oriented database schema we advocate a three-
step methodology [5]. First, ‘semantic modelling’ analyses the requirements of
the application. Its result can be represented by an entity-relationship schema or
a uml class diagram. Semantic modelling is done to ensure that all semantically
relevant aspects are captured. Second, ‘abstract logical formalisation’ transforms
the initial schema into an abstract object-oriented schema. Then this abstract
schema can be transformed in order to improve it. Third, ‘concrete class decla-
rations’ gives the schema for the underlying object-oriented database system.

One way to measure costs would be by running some tests after we have ar-
rived at a concrete object-oriented database system. If we deemed the measured
costs too high, we probably would have to go back to our abstract object-oriented
database schema and try to improve it. This could be a tedious process. In this
paper we lay the foundations for a cost driven design which refines the second
step of the full design methodology and includes a general cost model. The over-
all structure of this refinement is visualised in Fig. 1 and can be roughly outlined
as follows: The conceptual part of an abstract object-oriented schema is given
by describing types, classes and their hierarchy and semantic constraints. For
our cost model we complement this conceptual schema with an internal schema,
that lists the utilised access structures. There is a choice of different internal
schemas for every conceptual schema. In part this reflects the different underly-
ing database systems and the choices they give for implementing the conceptual
schema.



368 J. Biskup and R. Menzel

The different space costs of an abstract schema can be estimated given the
conceptual schema and a corresponding internal schema, and additionally, a
collection of queries and updates which represent the anticipated user activities.
For the analysis of time costs we describe an abstract object-oriented database
machine and cost functions for its operations. Queries and updates are expressed
as programs for the database machine. And the cost functions are steered by cost
parameters. Most of the cost parameters are estimates for a probable database
instance. Some of the parameters describe the underlying database system. Then,
by a step by step analysis of the machine programs, we can estimate the time
costs of the respective queries and updates.

There are several investigations considering costs while designing databases
[13,16,17,19,20]. Of particular interest are the following. Bertino and Foscoli [2]
present a model to characterise topologies of object references in object-oriented
databases. They present a set of parameters that are similar to the cost param-
eters that we use to steer our cost functions. Vance [21] presents a preliminary
design for an abstract query execution language. This is similar to our abstract
database machine. Both approaches focus on queries and don’t pay much atten-
tion to updates, constraint maintenance and access structures. Yao [23] compares
different query evaluation algorithms for relational databases by breaking them
into simple access operations. We seize this approach for our abstract object-
oriented database machine. In a sense our abstract database machine describes
an object algebra, where the operations are close to typical operations of a real
database system. An object algebra is given by Osborn [14]. Velez, Bernard and
Darnis [22] and Shekita [15] discuss implementation details of object-oriented
database systems. Updates change the state of the persistent database. We use
programs for an abstract database machine to represent updates, that must re-
spect the semantic constraints. We outline a language for such programs, but we
do not discuss how to actually write such programs. The latter task has been
investigated by others [10,11,12]. Jagadish and Qian [8] present a constraint
compilation scheme, that can be used to transform declarative semantic con-
straints into an efficient representation that permits localised processing. Gupta
and Widom [7] show how to locally verify global integrity constraints.

This introduction is completed by introducing our running example and some
formal notation. In Sect. 2 we sketch our object model, which is the basis for
conceptual and internal schemas. Our main contribution, an abstract database
machine, is presented in Sect. 3, where we select a representative collection of
database operations that basically work on streams of value lists. Section 4
outlines the cost evaluation, which is based on the abstract database machine,
and which can be exploited for the cost driven schema design.

We use a simple running example for illustration. It pictures a company with
several departments. Every department has a number, a name and a location.
In the departments work employees. Each employee has a name and a salary.
Among the employees are some that manage others. These managers are given
a budget to administer.



An Abstract Database Machine for Cost Driven Design 369

N is the set of natural numbers (without 0). We write f : X
p→ Y to express

that f is a partial function. A list l can be given by enumerating its elements,
〈x1, . . . , xn〉, and its length, n, is denoted by ‖l‖. Sometimes it is useful to be
able to apply an operation f to every element of a list l. This is denoted by
forall(l, f).

2 The Object Model

There is no such thing as the object-oriented model. One popular approach
is ‘The Object Data Standard: odmg’ [6]. Another related development is the
emergence of object-relational databases as advocated by Stonebraker [18] and
adopted in part by the latest sql standard [1]. We will now describe the object-
oriented model that we are going to use. It contains mainly the essential features
commonly found in object-oriented data models like odmg or F-Logic [9]. If you
know F-Logic you will see that our model has explicit types and specifically
special literal types. If you know odmg, you can see that we have left out many
of its possible data structures and just use sets and tuples. Figure 2 shows one
possible abstract formalisation of our example database.

First, there is a literal domain declaration. It contains the literal types, TLit,
the literals, L, and a literal domain assignment, ιLit : TLit → PL, that yields
an extension for every literal type. Over a literal domain declaration a database
schema can be given. A schema declares a set of object types, TObj, classes, C,
attributes, A, a class hierarchy, � ⊆ C × C, that is a partial order of the classes,
a class type assignment, γ : C → TObj, that gives an object type for every class,
an attribute type assignment, σ : TObj × A → TVal, that gives a value type for
every pair of object type and attribute, and semantic constraints, SC .

Further components of a schema can be derived from the given ones. From
every object type, t, an object identifier type, t OID, is constructed, giving the set
of object identifier types, TOID. The union of literal types and object identifier
types is called scalar types, TScalar. For every scalar type, t, a set type, t Set,
is constructed, giving the set of set types, TSet, that inherently consists of the
literal set types, TLitSet, and the object identifier set types, TOIDSet. The special
type � can be used, when no specific type is required. The union of all scalar
types, set types plus the special type � is called value types, TVal. Then, the set
of all types, T , is the union of the set of value types and the set of object types.

Finally, a specialisation hierarchy, ≤ ⊆ T × T , is defined as a partial order
of the types: Any type is more special then the type �, an object type is more
special than another object type, if all attribute types of the first are more special
than the attribute types of the second. This is canonically extended from object
types to object identifier types, and then from scalar types to set types. An
object identifier type is more special than another object identifier type, if the
first corresponds with an object type that is more special than the object type
that the second object identifier type corresponds with. Similarly, a set type is
more special than another set type, if the first corresponds with a scalar type



370 J. Biskup and R. Menzel

that is more special than the scalar type that the second set type corresponds
with.

Based on a database schema, a database instance can be given. A database
instance contains object identifiers, I, an attribute value assignment, α : I ×A p→
V , that gives a value for some pairs consisting of an object identifier and an
attribute, a direct class extension assignment, χ0 : C → PI, that yields a set
of object identifiers for every class, and an object type extension assignment,
ω : TObj → PI, that yields a set of object identifiers for every object type.

Again, we can derive further components of an instance from the given ones.
The set of all values, V , contains all object identifiers, all literals, all sets of object
identifiers and all sets of literals. The class extension assignment, χ : C → PI,
yields a set of object identifiers that is the union of all direct extensions of the
respective class and its subclasses. Finally, there is the type extension assignment,
ι : TVal → PV , that yields a set of values for every value type. It is defined
as a canonical extension of the literal domain assignment and the object type
extension assignment.

An internal schema consists of a set of access structure declarations, X ⊆
C × A, that lists all access structures by giving a class and an attribute of the
class, (c, A), for each access structure. An access structure characterised by (c, A)
can be used to retrieve objects of class c that have some given index value for
attribute A. If the type for A is a scalar type the access structure returns all
objects that have the index value as attribute value for the attribute A. If the
type for A is a set type the access structure returns all objects that contain the
index value in their attribute value for attribute A.

3 Abstract Database Machine

The rough structure of the abstract database machine is shown in Fig. 3. The
machine works by evaluating programs. A machine program is composed of steps
which are connected by channels. Each of these steps contains an operator with
the specification of its input and output. Data transfer from and to secondary
memory is encapsulated by the operators ‘scan’, ‘activate’, ‘write’, ‘delete’ and
‘access’. The data flow within the main memory is represented as input and
output arguments. Among the different types for arguments there is one pivotal
type, that is used for data passed from one operation to another using a channel.
This data transfer within the database machine is represented by streams.

3.1 Streams

A stream is a sequence of value lists. The values in the value lists are numbered
starting with 1. The number for a value is called its position.

All value lists that are part of the same stream must have the same type.
This stream type, (t1, . . . , tn), gives the number of values in the value lists, n,
and the types for every position, tk ∈ TVal \ {�}.

The attribute value assignment of our object model is a partial function. It
can be use to assign null values to attributes. We must therefore provide means



An Abstract Database Machine for Cost Driven Design 371

Fig. 2. A formalisation of the example database

to represent null values in our value lists. For that purpose we employ the special
value ⊥ that is different from any value already in V . This value is added to
the set of all values, V , and to all type extensions ι(t). The attribute value
assignment returns ⊥ for any attribute of ⊥, that is, α(⊥, A) = ⊥ for all A ∈ A.

A value list is a tuple of values, (v1, . . . , vn), vk ∈ V . A value list (v1, . . . , vn)
is of stream type (t1, . . . , tn′), if n = n′ and ∀k : vk ∈ ι(tk).

A stream is a sequence of value lists, 〈(v1,1, . . . , v1,n), . . . , (vm,1, . . . , vm,n)〉.
A stream is of a stream type, if all its value lists are of the stream type.

Some operations require that their input streams are sorted. For that we
use sortings of streams. A sorting of a stream is given as a list of positions,
(k1, . . . , kl). This list describes a lexicographic order: For every pair of value lists
(v1, . . . , vn) and (v′

1, . . . , v
′
n), where (v1, . . . , vn) comes before (v′

1, . . . , v
′
n) in the

stream s and there is a position given by the sorting where they differ, {x | vkx
�=

v′
kx

} �= ∅, for the most significant differing position, a = min{x | vkx
�= v′

kx
}, the

value of the first value list must be smaller than the value of the second value list,



372 J. Biskup and R. Menzel

Fig. 3. The abstract database machine

vka
≤ v′

ka
. We often write ‘The stream s is sorted on (k1, . . . , kl)’ instead of ‘The

sorting of s is (k1, . . . , kl)’. Note, that the sorting can be done for all value types.
A stream s of type (t1, . . . , tn) is completely sorted, iff it is sorted on some

(k1, . . . , kn). That is {k1, . . . , kn} = {1, . . . , n}.

3.2 Operations

Now, that we have defined streams, we can go on to describe the individual oper-
ations of the abstract database machine. First we define a set of basic operations.
After that we define some compound operations that use the basic operations as
building blocks. The unabridged description of each operation begins with the
name and a synopsis of the operation. Here we mention important aspects of an
operation: if it accesses the persistent database state, if it might generate dupli-
cates in its output, or if it needs its entire input stream to properly operate. Af-
ter that we first list the parameters, all the arguments that aren’t input streams
coming from other operations. Second, come input streams together with any
precondition that must be fulfilled. Note, that all the operations that require a
sorted input, have a name with a zero as index. After the description of the in-
put arguments is the description of possible output streams. If there are output
streams, we give their types, any postconditions they fulfil and define how they
can be calculated. Finally, for operations that modify the persistent database
state, we describe this database instance update.

You can find the unabridged descriptions of all operations in a technical
report [4], that we’ve written. In this paper we only give a complete description
for some of the operations. Often we restrict the description to the synopsis of
the operation. Table 1 summarises some interesting properties of the operations.



An Abstract Database Machine for Cost Driven Design 373

Table 1. Operations of the database machine

name number of
input
streams

number of
output
streams

access to
persistent
db state

may generate
duplicates

sorted input
required

needs entire
input stream
for operation

const — 1 — yes n/a n/a
duplicate 1 2 — — — —
scan — 1 read — n/a n/a
activate 1 1 read — — —
unnest 1 1 — yes — —
nest0 1 1 — — yes —
project 1 1 — yes — —
unique0 1 1 — — yes —
select 1 1 — — — —
sort 1 1 — yes — yes
product 2 1 — — — yes
unionall 2 1 — yes — —
create 1 1 — — — —
write 1 — write n/a — —
delete 1 — write n/a — —
union0 2 1 — — yes —
join0 2 1 — — yes —
access 1 1 read — — —

Basic Operations. The first two basic operations, ‘const’ and ‘duplicate’, are
there for technical reasons. With them it is possible to write machine programs
where every input stream is the output of another operation and where every
output stream is only used once.

The ‘const’ operation gives a constant stream. It can be used for queries and
updates that use constant values.

‘duplicate’ takes it input stream and returns it twice. It is used whenever the
output of an operation must be processed in two different ways.

‘scan’ takes a class and generates the stream of object identifiers of the class.
It is typically one of the first operations in a program, because it is the only
operation that reads data from the persistent database state and requires no
input stream to do this.

‘activate’ loads the objects for all object identifiers at a given position. This
operation is most often employed to navigate references from one class to an-
other. Besides ‘scan’ it is the only other basic operation that reads data from
the persistent database state.

– parameter: a position k.
– input stream: a stream s of type (. . . , tk, . . .), where tk is an object identifier

type, i.e., tk ∈ TOID.
– output stream: a stream of type (. . . , tk, . . . , t′1, . . . , t

′
n), where t′1, . . . , t′n are

the types of the defined attributes of tk, i.e., t′l = σ(tk, Al) with {A1, . . . ,
An} = attr(tk) and l < l′ ⇒ Al <A Al′ for a globally given total order <A.



374 J. Biskup and R. Menzel

The output stream is sorted like the input stream.
activate(s, k) = forall(s, fk), where fk((. . . , vk, . . .)) = 〈(. . . , vk, . . . , v′

1, . . . ,
v′

n)〉 with v′
l = α(vk, Al).

‘unnest’ is used to inspect the elements of a set. Every value list of the input
stream generates a sequence of value lists in the output stream by replacing the
set at the specified position by the values in the set, one after another. ‘unnest’
is one of the operations the might generate duplicate value lists in its output.

– parameters: a position k.
– input stream: a stream s of type (. . . , tk, . . .), where tk is a set type, i.e.,

tk ∈ TSet.
– output stream: a stream of type (. . . , t′k, . . .), where tk is the set type of t′k,

i.e., tk = t′k Set.
The output stream is sorted like the input stream.
unnest(s, k) = forall(s, fk), where fk((. . . , vk, . . .)) = 〈(. . . , v′

k,1, . . .), . . . ,
(. . . , v′

k,l, . . .)〉 with {v′
k,1, . . . , v

′
k,l} = vk and l = ‖vk‖.

‘nest0’ replaces each sub-sequence of elements of a sorted input stream that
are identical except for one given position with one value list in the output
stream. For the specified position the resulting value list has a set of all values
that the value lists of the input stream have at that position.

– parameter: a position k.
– input stream: a stream s of type (t1, . . . , tk, . . . , tn), where tk is a scalar type,

i.e., tk ∈ TScalar.
The stream s must sorted on some (k1, . . . , km), with {k1, . . . , kn−1} =
{1, . . . , k − 1, k + 1, . . . , n}.

– output stream: a stream of type (t1, . . . , t′k, . . . , tn), where t′k is the set type
of tk, i.e., t′k = tk Set.
The output stream is sorted like the input stream.

nest0(s, k) =

⎧⎪⎪⎨
⎪⎪⎩

〈〉 if s = 〈〉
〈(v1, . . . , {vk}, . . . , vn)〉 if s = 〈(v1, . . . , vk, . . . , vn)〉
〈x1〉 + nest0(〈x2, . . .〉) if s = 〈x1, x2, . . .〉 ∧ ¬(x1 =k̄ x2)
addk(x1, nest0(〈x2, . . .〉)) if s = 〈x1, x2, . . .〉 ∧ x1 =k̄ x2

with (v1, . . . , vn) =k̄ (v′
1, . . . , v

′
n) ⇐⇒ ∀l �= k : vl = v′

l and where
addk((v1, . . . , vk, . . . , vn), 〈(v′

1, . . . , v
′
k, . . . , v′

n), x′
3, . . .〉) = 〈(v′

1, . . . , v
′
k−1, v

′
k ∪

{vk}, v′
k+1, . . . , v

′
n), x′

3, . . .〉.

‘project’ disposes of parts of the value lists that are no longer needed. There
is no removal of duplicates. It is typically used at the end of a program to select
only the required values, or before one of the operations that operate on the
entire stream, like ‘sort’ or ‘product’, to reduce the amount of main memory
these operations might need.

‘unique0’ removes duplicates in a sorted stream. There are several operation
that might generate duplicates in their output streams even though their input
streams didn’t contain duplicates. Because only adjacent value lists in the input
stream are inspected by ‘unique0’ the input stream must be completely sorted.



An Abstract Database Machine for Cost Driven Design 375

‘select’ removes all value lists that do not satisfy a given predicate. It is typ-
ically used in the midst of a program to select data that satisfies some require-
ments. We refrain from further specifying different types of selection predicates.
But comparing a value in a value list with a constant value or another value in
the value list are probably the most common cases.

‘sort’ generates as output a sorted version of its input. The sorting of the
output is the one specified as parameter of the operation. The sort operation
is particularly important, because several other operations can only be used on
sorted input. It should be evident that ‘sort’ needs the entire input stream for
operation.

– parameters: a non-empty list of distinct positions (k1, . . . , kl), with km =
km′ ⇒ m = m′.

– input stream: a stream s of type (t1, . . . , tn), where {k1, . . . , kl} ⊆ {1, . . . , n}.
– output stream: a stream of type (t1, . . . , tn).

The output stream is sorted on (k1, . . . , kl).

‘product’ takes two input streams and yields their Cartesian product. Most
programs probably will not contain a product operation. We provide it for com-
pleteness and as a means to define the rather important join operation. ‘product’
needs the entire input stream for operation.

‘unionall’ takes two input streams and appends the second to the first. It
might generate duplicates in its output. When we assume that we normally
are not interested in duplicates, we will probably try to use ‘union0’ instead of
‘unionall’.

‘create’ generates new object identifiers. When we want to create objects we
need the values for their attributes and new object identifiers. The attribute
values can be created by ‘const’ or read from the persistent database state. But
for the new object identifier we need ‘create’. To finally write the objects to the
persistent database state the write operation must be used.

– parameter: an object identifier type t, i.e. t ∈ TOID.
– input stream: a stream s of type (t1, . . . , tn).
– output stream: a stream of type (t1, . . . , tn, t).

The output stream is sorted like the input stream.

‘write’ can be used to insert and update objects. The objects that are writ-
ten are extracted from the input stream, that contains in each value list the
attributes and object identifier for one object. When inserting new objects the
object identifiers must have been created by ‘create’. When updating objects the
object identifiers have been read from the persistent database state. The written
objects are placed in the direct extension of the specified class. Next to ‘delete’
this is the only operation that changes the persistent database state.

– parameters: a class name c, a position l and a function f : attr(γ(c)) → N,
– input stream: a stream s of type (t1, . . . , tn), where

⋃
A∈attr(γ(c)) f(A) ⊆

{1, . . . , n} and tl ≤ γ(c) and tf(A) ≤ σ(c, A).
– output stream: none.



376 J. Biskup and R. Menzel

– database instance update:
– I := I ∪ J ∪ Ī
– α(vl, A) := vf(A), for (v1, . . . , vn) ∈ s and A ∈ attr(γ(c))
– χ0(c) := χ0(c) ∪ J
– ω(t) := ω(t) ∪ J for all t ≥ tl

where J = {vl | (v1, . . . , vn) ∈ s} and Ī = {vf(A) | (v1, . . . , vn) ∈ s ∧ tf(A) ∈
TOID ∧ A ∈ attr(γ(c))}.

‘delete’ removes objects from class extensions. All the objects that are given
by the object identifiers in the input stream at the specified position are removed
from the direct extension of the specified class and its subclasses. Besides ‘write’
this is the only other operation that updates the persistent database state.

Compound Operations. The following operations can be expressed by means
of the basic operations. That means that they do not extend the expressiveness.
They are provided, because they typically entail smaller costs than the costs
that are caused by the equivalent composition of basic operations.

‘union0’ takes two equally sorted input streams and unites them. Duplicates
are removed. In contrast to its counterpart, the basic operation ‘unionall’, the
result of ‘union0’ is sorted.

‘join0’ takes two sorted input streams and joins them. This is a standard
equi-join for one join value. It is not only useful to compute a join for literal
values but also for object identifiers.

– parameters: a position k and a position l.
– input streams: a stream s1 of type (t1, . . . , tk, . . . , tn) sorted on (k, k1, . . . , kp)

and a stream s2 of type (t′1, . . . , t
′
l, . . . , t

′
m) sorted on (l, . . .).

– output stream: a stream of type (t1, . . . , tk, . . . , tn, t′1, . . . , t
′
l, . . . , t

′
m) sorted

on (k, k1, . . . , kp).
join0(s1, s2, k, l) = select(product(s1, s2), pk,n+l) where pk,n+l(v1, . . . , vn+m)
⇐⇒ vk = vn+l.

‘access’ uses an access structure to retrieve the objects for the given key
values. For the values at the specified position in the input stream all objects of
the specified class that have these values for the specified attribute are loaded
and combined with the respective value lists. Only value lists of the input stream
where matching objects can be found reappear in the output stream. Next to
the basic operations ‘scan’ and ‘activate’, it is the third operation the reads data
from the persistent database state.

– parameters: an access structure declaration (c, A) ∈ X and a position k.
– input stream: a stream s of type (t1, . . . , tk, . . . , tn), where tk is the type of

the keys of the access structure, i.e. tk = keytype((c, A)).
– output stream: a stream of type (t1, . . . , tn, t OID, t′1, . . . , t

′
m), where t = γ(c)

and the t′l are the types of the defined attributes of t as describe for ‘activate’.
The output stream is sorted like the input stream.



An Abstract Database Machine for Cost Driven Design 377

x1 := const(〈(‘Jones’)〉, (string))
x2 := access(x1, (Manager, name), 1)
x3 := access(x2, (Employee, boss), 2)
x4 := project(x3, f) with f(1) = 8

x1: (string)
x2: (string, manager OID, string, integer, manager OID, integer)
x3: (string, manager OID, string, integer, manager OID, integer,

employee OID, string, integer, manager OID)
x4; (string) x1: 〈(‘Jones’)〉
x2: 〈(‘Jones’, i7, ‘Jones’, 18 000, i15, 180 000)〉
x3: 〈(‘Jones’, i7, ‘Jones’, 18 000, i15, 180 000, i4, ‘Smith’, 12 000, i7),

(‘Jones’, i7, ‘Jones’, 18 000, i15, 180 000, i5, ‘Kline’, 14 500, i7),
(‘Jones’, i7, ‘Jones’, 18 000, i15, 180 000, i6, ‘Adams’, 16 000, i7)〉

x4: 〈(‘Smith’), (‘Kline’), (‘Adams’)〉

Fig. 4. A machine program for computing the names of all employees managed by
Jones, its respective stream types, and the actual streams for the example database.

3.3 Machine Program

A program for the database machine consists of one or more steps. Each step
designates one operation and describes the input and output of the operation.
For this purpose, streams are represented by program variables of the form xk,
called channels. Every input stream for an operation is given as a channel that
stands for the output stream of an earlier step.

A machine program step is denoted as op(args), for operations without an
output stream, as xk := op(args), for operations with one output stream, or as
(xk, xl) := op(args), for operations with two output streams. Here xk denotes a
channel, op is an operator and args is a comma separated list of suitable argu-
ments. All the parameters of an operation must be provided as concrete values.
If the operation requires an input stream, the stream is given as a channel xl.

A machine program is a sequence of machine program steps that satisfies
the following requirements: The preconditions of the operators in all steps are
satisfied. All arguments are of valid types in particular. Each channel is used as
output by exactly one step. (The two outputs of ‘duplicate’ must be two different
channels.) Each channel is used as input by at most one step. Each channel that
is used as input by a machine program step is used as output by an earlier step.

Note, that every program can be represented by an ordered directed acyclic
graph, where the nodes stand for program steps and the vertices for channels.

4 Cost Evaluation

The space costs can be determined without using the abstract database machine.
So, for the sake of brevity, we only consider time costs. The time costs are
evaluated by looking at the steps of the machine program one after the other.
In this process all program steps and all channels in the program are adorned
with cost statements. When we have a program step it contains an operation.
For the purpose of cost evaluation we must provide cost functions for every
operation. These cost functions are applied to the parameters of the current step,



378 J. Biskup and R. Menzel

Application dependent parameters:

– Nc: number of objects in the extension of class c.
– N0,c: number of objects in the direct extension of class c.
– nt: average number of blocks for an object of type t.
– n(t1,...,tn): average number of blocks for a value list of type (t1, . . . , tn).
– nu:t: average number of elements in a set of type t.
– nA:c,A: average number of values for attribute A of class c.
– θs:c: average filling level of the object identifier access structure for class c.
– θa:c: portion of objects of class c that have be moved from their original second memory location.
– θp: selectivity of predicate p.
– θd:c: fraction of objects in class c that are only members of c or any subclasses of c.
– θD:c: correction factor for deletion of objects of class c.
– fq:(t1,...,tn)(l): average number of unique elements in a stream of type (t1, . . . , tn) of length l.

System dependent parameters:

– na: fraction of a block that is needed for the non-data part of an access structure per element
of the stored set.

– nOID: number of object identifiers that fit into one block.
– nmem: size of memory that is reserved for sorting and similar operations.
– nfiles: maximum number of open files for sorting.
– η(n): number of block accesses required to locate an element using an access structure for a set

with n elements.

Fig. 5. Some cost parameters used by the cost evaluation

to the types, sortings and the cost statements of the input channels. The results
of this application are used as the cost statement of the step and as the cost
statement for any output channels, respectively. After every step is adorned with
a cost statement, the total cost of the machine program results by combining
the cost statements of all program steps with an aggregation function. We call
the result of the aggregation total cost statement. We use simple cost functions,
that distinguish between access to blocks of secondary memory and accesses to
values that reside in main memory. More elaborated cost functions are possible,
but beyond the scope of this exposition.

Now we could look at the cost functions for each operation in detail. But for
space limitation we refrain from doing so. Instead, in order to give an impression
of the flavour of the cost functions, we only list the main cost parameters in Fig 5.

5 Conclusion

We presented an abstract database machine for object-oriented databases, and
we outlined how to exploit this machine for refining a general database schema
design methodology in order to take cost optimisation into account. The detailed
cost model has been beyond the scope of this presentation. Current research is
devoted to thoroughly study the impact of costs for the full process of schema
design. We mainly have to investigate the impact of semantic constraints, how
they suggest to declare access structure, how they influence the need for sorting,
and how they can be enforced with low costs.



An Abstract Database Machine for Cost Driven Design 379

References

1. American National Standards Institute, 11 West 42nd Street, New York, NY,
10036. ANSI/ISO/IEC 9075-2-1999, Information Technology – Database Lan-
guages – SQL – Part 2: Foundation (SQL/Foundation), Dec. 8, 1999.

2. E. Bertino and P. Foscoli. On modeling cost functions for object-oriented data-
bases. IEEE Transaction on Knowledge and Data Engineering, 9(3):500–508,
May/June 1997.

3. J. Biskup. Database schema design theory: Achievements and challenges. In S.
Bhalla, editor, Proc. of the 6th Intl. Conf. Information Systems and Management
of Data, number 1006 in LNCS, pages 14–44, Bombay, 1995. Springer.

4. J. Biskup and R. Menzel An abstract database machine for cost driven
design of object-oriented database schema. Technical Report, Universität
Dortmund, 2001. http://ls6-www.cs.uni-dortmund.de/issi/archive/literature/2001
/Biskup Menzel:2001.ps.gz

5. J. Biskup, R. Menzel, and T. Polle. Transforming an entity-relationship schema
into object-oriented database schemas. In J. Eder and L. A. Kalinichenko, edi-
tors, Advances in Databases and Information Systems, Moscow 95, Workshops in
Computing, pages 109–136. Springer-Verlag, 1996.

6. R. G. G. Cattell and D. K. Barry, editors. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, 2000.

7. A. Gupta and J. Widom. Local verification of global integrity constraints in dis-
tributed databases. In P. Buneman and S. Jajodia, editors, Proc. of the 1993 ACM
SIGMOD Intl. Conf. on Management of Data, pages 49–58, 1993.

8. H. V. Jagadish and Xiaolei Qian. Integrity maintenance in an object-oriented
database. In Li-Yan Yuan, editor, Proc. of the 18th Intl. Conf. on Very Large Data
Bases, pages 469–480, British Columbia, Canada, 1992.

9. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42(4):741–843, 1995.

10. U. Lipeck. Transformation of dynamic integrity constraints into transaction spec-
ifications. Theoretical Computer Science, 76:115–142, 1990.

11. W. W. McCune and L. J. Henschen. Maintaining state constraints in relational
databases: A proof theoretic basis. Journal of the ACM, 36(1):46–68, 1989.

12. J.-M. Nicolas. Logic for improving integrity checking in relational databases. Acta
Informatica, 18(3):227–253, 1982.

13. B. A. Nixon. Representing and using performance requirements during the devel-
opment of information systems. In M. Jarke, J. Bubenko, and K. Jeffery, editors,
Advances in Database Technology—EDBT ’94, number 779 in LNCS, pages 187–
200. Springer, 1994.

14. S. L. Osborn. Identity, equality and query optimization. In K. R. Dittrich, editor,
Advances in Object-Oriented Database Systems, 2nd Intl. Workshop on Object-
Oriented Database Systems, number 334 in LNCS, pages 346–351, Bad Münster
am Stein-Ebernburg, Germany, Sept. 27–30, 1988. Springer-Verlag.

15. E. J. Shekita. High-Performance Implementation Techniques For Next-Generation
Database Systems. PhD thesis, U. of Wisconsin, Madison, 1990.

16. M. Steeg. The conceptual database design optimizer CoDO – concepts, imple-
mentation, application. In B. Thalheim, editor, Proc. of the 15th Intl. Conf. on
Conceptual Modeling, number 1157 in LNCS, pages 105–120, Cottbus, Germany,
Oct. 7–10, 1996. Springer.



380 J. Biskup and R. Menzel

17. M. Steeg and B. Thalheim. A computational approach to conceptual database
optimization. Technical report, BTU Cottbus, May 1995.

18. M. Stonebraker, P. Brown, and D. Moore. Object-Relational DBMSs: Tracking the
Next Great Wave. Morgan Kaufmann, Second edition, 1999.

19. P. van Bommel. Experiences with EDO: An evolutionary database optimizer. Data
& Knowledge Engineering, 13(1994):243–263, 1994.

20. P. van Bommel and T. P. van der Weide. Reducing the search space for conceptual
schema transformation. Data & Knowledge Engineering, 8(1992):269–292, 1992.

21. B. Vance. An abstract object-oriented query execution language. In C. Beeri, A.
Ohori, and D. E. Shasha, editors, Proc. of the Fourth Intl. Workshop on Data Base
Programming Languages – Object Models and Languages, Workshops in Comput-
ing, pages 176–199, New York City, 30 Aug.–1 Sept. 1993. Springer.

22. F. Velez, G. Bernard, and V. Darnis. The O2 object manager: An overview. In
P. M. G. Apers and G. Wiederhold, editors, Proc. of the 15th Intl. Conf. on Very
Large Data Bases, pages 357–366, Amsterdam, 1989.

23. S. Bing Yao. Optimization of query evaluation algorithms. ACM Transactions on
Database Systems, 4(2):133–155, June 1979.



Author Index

Biskup, Joachim, 366
Briukhov, Dmitry O., 70

Calabretto, Sylvie, 98
Christensen, Helle L., 225
Corral, Antonio, 41

Frasincar, Flavius, 323

Garzotto, Franca, 1
Gergatsoulis, Manolis, 352

Haslund, Mads L., 225
Hatzopoulos, Michael, 294
Houben, Geert Jan, 323

Jensen, Christian S., 55
Josifovski, Vanja, 308

Kalinichenko, Leonid A., 70
Kang, Yong-Kyoon, 84, 127
Kapopoulos, Dimitris G., 294
Karakaya, Murat, 182
Karteris, Dimitris, 352
Katchaounov, Timour, 308
Khandelwal, Vijay, 196
Kim, Ki-Chang, 127
Kim, Yoo-Sung, 84, 127
Ku, Kyong-I, 84

Lellahi, Kazem, 239

Manolopoulos, Yannis, 41
Menzel, Ralf, 366
Morzy, Tadeusz, 141
Mouzaki, Athina, 352

Nielsen, Henrik N., 225
Nørv̊ag, Kjetil, 210

Pfoser, Dieter, 112
Pinon, Jean-Marie, 98

P�lodzień, Jacek, 27
Pokorný, Jaroslav, 280
Pranevicius, Henrikas, 253
Puuronen, Seppo, 155

Ray, Indrajit, 266
Ray, Indrakshi, 266
Risch, Tore, 308
Roussey, Catherine, 98
Rusinkiewicz, Marek, 2

Schmidt, Joachim W., 3
Sehring, Hans-Werner, 3
Skrypnyk, Iryna, 155
Skusa, Michael, 3
Skvortsov, Nikolay A., 70
Slivinskas, Giedrius, 55
Stavrakas, Yannis, 352
Sterpis, Dimitris, 352
Subieta, Kazimierz, 27

Takizawa, Makoto, 196
Tryfona, Nectaria, 112, 225
Tsymbal, Alexey, 155

Ulusoy, Özgur, 182

Vassilakopoulos, Michael, 41
Vdovjak, Richard, 323
Vojtáš, Peter, 280

Wang, Guoren, 338
Wienberg, Axel, 3
Wietrzyk, Vlad Ingar, 196
Wojciechowski, Marek, 141, 169

Yang, Xiaochun, 338
Yu, Ge, 338

Zakrzewicz, Maciej, 141
Zamulin, Alexandre, 239


